Tutorial Set 4: Remote sensing

Exercise Site 20_4-4 Digital number to reflectance conversion

Learning objective: Converting a Landset 7 ETM image from a digital number to

reflectance

Techniques: Reclassifying and compositing new rasters using the **Reclass** and **Raster**

Calculator

Data Source: Dataset5

Schema of the process from Landsat7 digital number to reflectance:

Landset7 ETM images used in this tutorial are acquired from <u>USGS Global Visualization Viewer</u>. These images should not be used directly to calculate NDVI because they have been precorrected and formatted as an 8-bit number (ranges from 0-255), or called digital number data (DN). For NDVI purpose, these images should be converted back to reflectance value.

Part 1: Reflectance calculation

Step 1: Reclassify DN image.

Reclassify **0 value** to **NoData** using **Reclassify (Spatial Analyst Tools**). Cells with value = 0 in a Landsat image indicates missing data.

- 1. Go to ArcToolbox > Spatial Analyst Tools > Reclass > Reclassify.
- 2. Reclassify **RED.TIF** (Band 3) and **NIR.TIF** (Band 4).

3. Result:

Before reclassifying. Cells value range 0-255

After reclassifying. Cells value ranges 1-255

Step 2: Convert DN image to radiance image (Chander et al, 2009)

Formula: $L_{\lambda} = (gain_{\lambda} \times DN7) + bias_{\lambda}$

 L_{λ} : Radiance [Watts/(m²* μ m*ster)]

DN7: Landsat7 digital number data $gain_{\lambda}$ and $bias_{\lambda}$: Band specific number

Band	Gain	Bias	
3 (RED)	0.621654	-5.62	
4 (NIR)	0.639764	-5.74	

- 1. Go to ArcToolbox > Spatial Analyst Tools > Map Algebra > Raster Calculator
- 2. Create radiance images for **RED_r.TIF**.

3. Repeat the same process for **NIR_r.TIF**.

Step 3: Convert radiance image to reflectance image

1. Formula:
$$R_{\lambda} = \frac{\pi \times L_{\lambda} \times d^2}{E_{su,\lambda} \times \sin(\theta_{SE})}$$

 R_{λ} : Reflectance [unitless ratio]

L_{\(\lambda\)}: Radiance [Watts/(m²*\(\mu\m^*\)ster)]

d: earth-sun distance [in astronomical units]

 $E_{su,\lambda}$: Band-specific radiance emitted by the sun

 θ_{SE} : Solar elevation angle

2. Find values:

• $E_{su,\lambda}$

9)
_

• θ_{SE}

Open the file "*_MTL. txt". Find SUN_ELEVATION = 40.334696985

 $\theta_{SE} = 40.33496985 \text{ (degree)}$

Note: in ArcGIS, the value for sin() should be in radians.

So, $\theta_{SE} = 40.33496985$ (degree) = $40.33496985 * \pi/180$ (radians) = 0.703978 (radians)

d

To find the earth-sun distance, we should find which day of the year (DOY) the image was taken. This information is recorded in the file "*_MTL.txt". Find DATE_ACQUIRED =

DOY	d	DOY	d	
241	1.00992	301	0.99359	
242	1.00969	302	0.99332	
243	1.00946	303	0.99306	
244	1.00922	304	0.99279	
245	1.00898	305	0.99253	
246	1.00874	306	0.99228	
247	1.00850	307	0.99202	
248	1.00825	308	0.99177	
249	1.00800	309	0.99152	
250	1.00775	310	0.99127	
251	1.00750	311	0.99102	
252	1,00724	312	0.99078	
253	1,00698	313	0.99054	
254	1.00672	314	0.99030	
255	1.00646	315	0.99007	d = 1.00318 for DOY = 267
256	1.00620	316	0.98983	/
257	1.00593	317	0.98961	
258	1.00566	318	0.98938	
259	1,00539	319	0.98916	
260	1.00512	320	0.98894	
261	1.00485	321	0.98872	
262	1,00457	322	0.98851	
263	1.00430	323	0.98830	
264	1.00402	324	0.98809	
265	1.00374	325	0.98789	
266	1,00346	326	0.98769	
267	1.00318	327	0.98750	
268	1,00290	328	0.98731	
269	1.00262	329	0.98712	

Earth-Sun distance (d) in astronomical unit DOY is listed below (Chander et al., 2009):

- 3. Go to ArcToolbox > Spatial Analyst Tools > Map Algebra > Raster Calculator
- 4. Create reflectance image for **RED_ra.TIF** and **NIR_ra.TIF**.

For RED_ra.TIF:

Equation = $(3.141592654 * "RED_ra.TIF" * Square(1.00318)) / (1533 * Sin(40.33496958 * 3.141592654/180))$

Output = *RED_ref.TIF*

For NIR_ra.TIF:

Equation = $(3.141592654 *"NIR_ra.TIF" *Square(1.00318))/(1039* Sin(40.33496958 *3.141592654/180))$

Output = *NIR_ref.TIF*

Step 4: Correct reflectance image, i.e., reclassify the negative value to 0.

During the previous calculation, some negative values are produced We have to correct them and set them to 0.

- 1. Go to ArcToolbox > Spatial Analyst Tools > Map Algebra > Raster Calculator.
- 2. Create corrected reflectance image for **RED_ref.TIF** and **NIR_ref.TIF**.

3. Result of *RED_refc.TIF* and *NIR_refc.TIF*.

