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Expected Outcome

* Starting from our fundamental understanding
the biological processes, we can then add
complexity to the system

— Change soil conditions (e.g., texture, porosity)

— Modify environmental conditions
(e.g., temperature, moisture)

— Add other organisms (including plants)
— Extrapolate to larger spatial and longer temporal scales
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Objective

 Identify the sequence of biological processes that
occur when materials containing C and N enter
soil

* Biological processes: cascade of biochemical
reactions, initiated by chemical signals and
responses of genes that encode for enzymes

¢ We focus on microbially-mediated processes
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Challenges

* Why are C and N cycles “disconnected”?

* In nature, the C and N cycles are tightly
linked... all N compounds are bound to C
compounds (C-N bond).

* We will put the cycles together by considering
a simple story — how does a leaf decompose?
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COMPLEX POLYMERS IN SOIL SOLUTION
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Vaculole contains soluble sugars (C) and NO,

Chloroplast contains chlorophyll

Nucleus contains DNA, nucleic acids, proteins
Cytoplasm contains mix of C and N compounds

Cell membrane contains C-rich phospholipids, also

C—p— H :in channels

Primary cell wall contains cellulose, hemicellulose
and pectin (C-rich compounds)
Secondary cell wall contains cellulose and lignin

(C-rich compounds)
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IN SOIL SOLUTION
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IN SOIL SOLUTION
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IN SOIL SOLUTION
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Student presenters

* Starting from our fundamental understanding
the biological processes, we can then add
complexity to the system

— Change soil conditions (e.g., texture, porosity)

— Modify environmental conditions
(e.g., temperature, moisture)

— Extrapolate to larger spatial and longer temporal scales

Factors Influencing N Mineralization

Abiotic and Biotic Activity
(Extracellular
enzymes, Microbes and Soil
fauna)

Manure Organic
Matter

Soil Moisture

Nitrogen Crop Residue Organic
Mineralization Matter

Soil Temperature

Soil Properties

(Texture) Soil Organic Matter
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Extracellular Enzyme Activity

* Extracellular enzyme activity can be used to
predict soil N mineralization

— N-acetylglucosaminidase (NAGaS€) mbatabai 2010; oyek 2012
* Cleaves peptidoglycan into amino sugar monomers
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Two Microbial-Mediated Routes

* Direct Route

— Microbes directly assimilate small monomeric
compounds e.g. amino acids and amino sugars

* Mineralization — Immobilization — Turnover

— Organic N must mineralize, then be immobilized
and turnover to release N into the soil solution

Depolymerization
Regulation point Immobilization
Competes with plant uptake
Soil
Organic Monomers NS \licrobes [PREEEEN NH,*

Matter

Enzymes are produced by soil
microbial communities

* Functional genes encode for the extracellular
enzymes that hydrolyse organic N to NH4

* Present (DNA based) vs Potential microbial
activity (RNA based)

* Functional capacity = presence of genes that
encode for the enzymes

* E.g. copiotropic vs oligotropic

Blazewicz et al. ISME (2013) 22

Crystalline Cellulose

* Buried glycosidic bonds force recalcitrance
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Process of Cellulose Depolymerization

Himmel et al. Science (2007) .
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Sandy soil Clayey soil
Nitrification

* Nitrification, the oxidation of ammonia (NHs)

to nitrate

* Drive soil nitrification

— Ammonia-oxidizing archaea (AOA)
— Ammonia-oxidizing bacteia (AOB)

* The amoA is a biomarker used to quantify A-

oxidizers

* Archaeal amoA genes t
) Substrate affinity
* Bacterial amoA genes

Environmental Conditions

¢ -Numerous studies indicate an effect of texture
on N mineralization

* Drying and rewetting act as a dominant controls
over N mineralization but do not seem to alter
potential function samard et al. isme (2013)

— Fast response of the bacterial community
— Fungal community - not so fast

Nitrification

Nitrification Pathway
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Microbial community interaction

* Soil pH
* Oxygen

Climate factors
* Ammonia concentration in soil solution

Soil texture

Clay soil
* Adsorption of (NH3)
* Location in the soil matrix

— AOA does not decreases with the soil depth(Sher
et al. 2012)

— AOB and AOA are more present in the top (0.5m)
of the soil profile (e.g Nitrosomonas and
Nitrosospira) (Sher et al. 2012)

« Distribution pattern of AOA and AOB (Erguder

et al. 2009) -

Nitrification rate in coastal
surface water
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Figure 2 Nitrification rates in Monterey Bay surface waters in
April (N=27) and June (N=15) of 2011. Data are plotted against
density rather than with depth.

Smith et al. 2014

Soil texture

* Particle size
— Clay <2mm in diameter
— Sandy 0.02 - 2000mm
* Fine particles reduces hydraulic conductivity

—  http://wegc203116.uni-graz.at/meted/hydro/basic/Runoff/media/graphics/soil _textures.swf
* Fertility : finer textured soils tend to have greater
ability to store soil nutrients.

Pore Space in Sandy Soil vs. Clay Soil

Sandy Soil Clay Soil

pores

Less total pore volume Greater total pore volume

Less porosity Greater porosity

Sandy soils

* Have the light power of retaining (NH3)

* archaeal amoA gene Little

* bacterial amoA gene variations

Sandy soil AOA
5%  aAOB

0.23%

[Leininger et al. 2006)

Summary

Other factors that influence abundance
°T, O2, pH, NH3 conc.
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Facts about Nitrous Oxide (N,O)

* 5% GWP
* 300 times > potent than CO,
¢ Threat to ozone layer

Soil Moisture influences Nitrous
oxide (N,0) Emission from
Agricultural Soils

*Agr. Leading generator of N20
(86%)

Soil Moisture: Proxy for oxygen

Factors Controlling N,O production availability

* Oxygen concentration is rarely measured and soil moisture is used
as a measurable proxy for oxygen availability.

* Soil oxygen concentration controls the redox potential which
governs microbially - mediated reactions (aerobic vs anaerobic).

Nitrogen ‘
availability/type

Soil Moisture Soil texture

Soll Moisture Content also affects:
* Metabolic activity of microorganisms
* Substrate availability and redistribution

el Carbon

temperature availabilit
P y Challenge: Distinguishing the effect of 02 and substrate availability on

N,O production in soils.

Influence of oxygen availability on the Influence of oxygen availability on the
different N,O production different N,O production
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Contributions of different pathways to N,0

.
production (Zhu 2013)
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Hypothesis 1

Effect of soil moisture
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N,O Study (Laboratory Study)

* Objective:

To measure N,O emissions from three agriculturally

important Trinidadian soil types under varying moisture
contents and N-Fertilizer application rates.

Hypothesis 2

» Effect of N fertilizer application rates and soil texture
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Soil is central to the system
¢ Connects the Ag-Aquatic sub-systems
¢ Physical and biological processes

¢ Hosts highly specialized organisms




Nitrogen Transformation in the Time Scale
Nitrate production or consumption over time

Earth systems operate in a cyclic way & time scales and size scales

are related

s (F w Geochemical cycles: dominated by exchange of material among

1 ecosystems b

0.5

o
-0.5

y ;

s Biogeochemical cycles: exchange material within ecosystems N cycle
-1 AOB or 404 O,

e Soil having N prod > N cons at critical growth stages will have o Noy

enough supply of N for crop=>no response to additional N inputs
* Soil having N prod < N cons have less plant-avail. N and thus
respond N fertilizer inputs
* Plant-avail. N pools at the end of the growing season (harvest) are
better indicator of soil N supply than pool sizes at the beginning
of the growing season (pre-planting)

ammonium
oxidation

Size spectrum of different particles in soil, pores and biota
J. Plant Nutr. Soil Sci. 2010, 173, 88-9

Differential contributions of AOA ecotypes to nitrification
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Figure 3 The distribution and abundance of archaeal amoA
genes and transcripts along density surface in Monterey Bay
surface waters. (a) WCA and (b) WCB ameA gene abundances

Nltrlte plotted along density surface in April (N =41 for both genes) and
oxidoredu June (N=32 for both genes). Transcript abundances for (¢] WCA
NO, + 5H*+4e ctase NO; + 2H* + 2e amoA (N=37/31 for April/June) and (d) WCB amoA (N=22/17)

All data are plotted on the same axis for comparison purposes.

Differential contributions of AOA ecotypes to nitrification Research Tools
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* Controlled lab experiment

* DNA based tools

* Mathematical models & geostatistics
* Field-scale validation

Mitrification (nmol I d™)

[ [ | [ [ [
o April 0 2 - & 8 10

o June WCA amoA genes x 10% (1)

*AOA could potentially yield valuable relationship for prediction

of soil nitrification rates from amoA genes
ISME Journal (2014)



Summary

Require experiments at a minimum of two scales to
develop and test models for nitrifiers functioning

Thank you!

* Selected fields within a watershed scale and lab
scale

Integrate multiple factors influencing N cycle

° E.g, ammonification nitrification and genes Zhor Abail, Naeem Ahmed, Sebastian Belliard, Habib
Diop, Haroldo Dorea, Bineeta Gurung, Akaram
Ismail, Mohamed Leila, Leo Leon-Castro, Leann Metivier, Susan
Robinson, Ben Thomas, Terry Wang, Kiara Winans and Joann
e . L Whalen
Integrate nitrifiers diversity into assessment of

ecosystem function Soil Ecology Laboratory, McGill University



