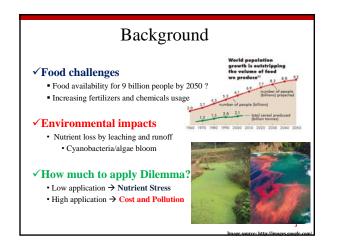
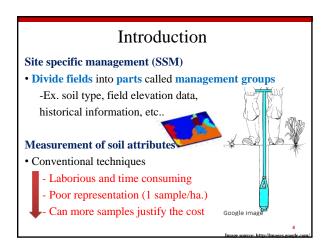
BGSTECH Lunch Seminar-V

Nandkishor Dhawale,

PhD. Candidate and PASS research team member Department of Bioresource Engineering

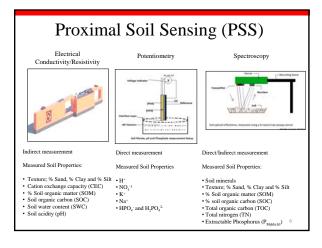

> Research Advisors Dr. Viacheslav I. Adamchuk Dr. Shiv O. Prasher

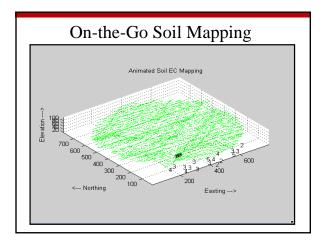

> > 11/05/2014

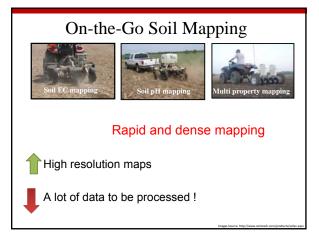
Topics of the talk

- 1. Background and Introduction
- Proximal Soil Sensing

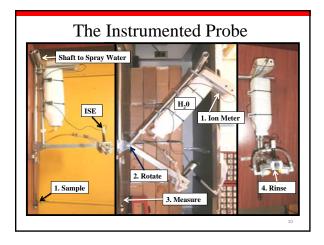
 On-the Go Soil Sensing
 On-the-Spot Soil Sensing
- 3. Research Objectives
- 4. Highlighting Results on
 - i. Combining Soil Sensor Information
 - ii. Automated On-the-Spot Analyser
 - iii. Sensing with Soil Spectroscopy




Proximal Soil Sensing (PSS)


The term *PSS* is used when field-based sensors are used to obtain signals from the soil, placing the sensor's detector in contact with or close to (within 2 m) of the soil. (Viscarra Rossel and McBratney, 1998; Viscarra Rossel *et al.*, 2010).

With advancements in Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS), soil information can be collected at resolutions <1-2 cm horizontally and about a twice of it vertically.



Disadvantages

• Soil distortion is created along the entire path travelled.


• Response time of the sensor can be a limiting factor on the time allowed for each measurement.

• What if field surface coverage does not allow for the continuous engagement between soil and parts of the sensor system.

Soil pH

Ten locations from seven plots, on the campus seed farm's research facility (McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC, Canada) were chosen to conduct the field evaluation.

Soil NO₃-Canola field divided into sixteen plots, which were treated with different levels of urea. Two months after planting, three random in-situ measurements were taken at a depth of 2-3 cm below soil surface. 3.9 heddetted, NO, mg L-1 2.5 ٠ 20 Variabili L5 â 1.0 ģ 1.8 1.5 2.8 2.5 3.6

eilNO₂ mg L⁴

159

100

58

Nhep

Disadvantages

• Need of operator.

• What if it is very crucial to collect soil samples or sensor based measurements without delays (on time) where data misinterpretation and financial losses are undesirable.

• Else if in harsh and hazardous environments, where health of human labour is at risk.

• What about exploring automation/robotic solutions?

13

Mars Rovers List of well-known Mars Rovers 1. Sojourner, 1997-97 2. Spirit, 2003-10 3. Opportunity, 2004-12 4. Curiosity, 2011-present Soil Mapping System (None) Simpler than the Mars Rover. Affordable to a North American farmer. Robust to operate in uneven field surface conditions.

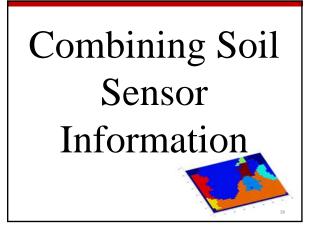
Challenges

Several challenges over choosing or developing a suitable.

• Platform of mobile vehicle, capable to operate in uneven field surface conditions.

- Platforms for soil sensor data acquisition.
- Strategies to collect multi soil information.
- Algorithm's to combine soil sensor information.
- Human safety and security.

All above keep the research plate burning hot in this discipline!


Research Objectives

The overall objective of this research is:

•To develop an Automated On-the Spot Analyser (OSA)

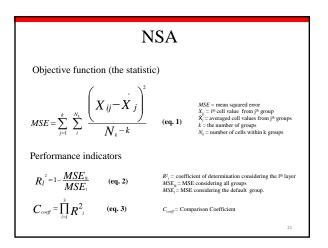
The specific objectives are:

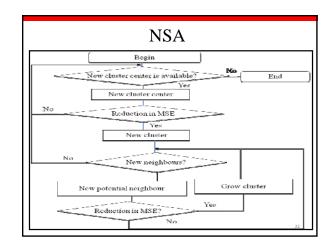
1.To develop a methodology for the hierarchical clustering of high-density, multi-source, proximal-sensing soil data such as Field Elevation and Soil Electrical Conductivity. 2.To develop and evaluate a autonomous platform capable to determine H^+ and NO_3^- ion activities on-the-spot. 3.Analysing the capabilities of advanced Vis/NIR/MIR spectroscopic instruments, for detecting differences in selected soil properties towards extending the suit of deployable sensors, on the platform.

Present Choices

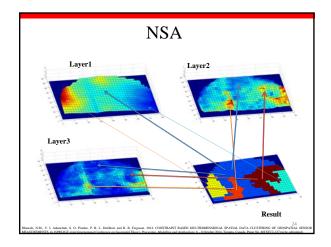
Majority of known algorithms

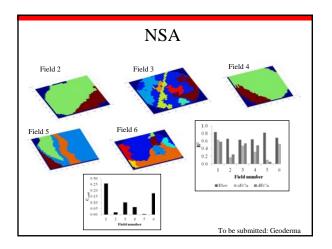
≻Relate to Kmeans clustering.

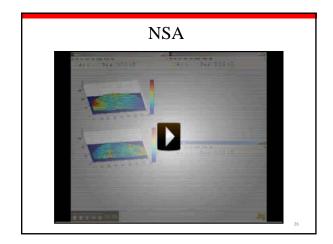

> Which calculates a distance matrix based on data and performs clustering over this new distance matrix and they doesn't consider the spatial distances.

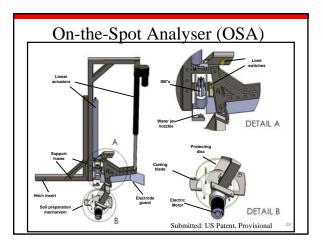

> The results depends on the selection of initial centroids and therefore not repeatable and requires cross validation.

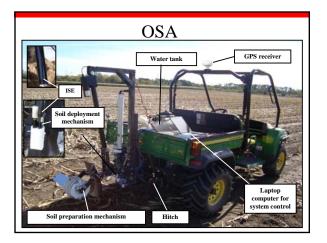
> Complexity and frequently occurring discontinuities of certain management groups make this technology less appealing to potential users.

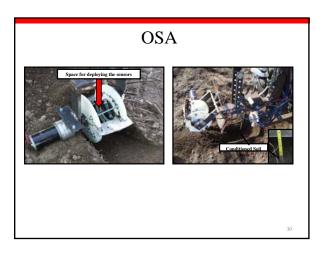

A New Algorithm Using Neighbourhood Search Analysis(NSA)

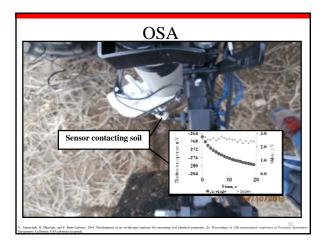

- 1. The default set of group is average of all data points and is called the default of the field.
- 2. Minimum new group size is defined considering a location with all eight immediate neighbours.
- 3. A new group can only initiate and grow if the new statistic is lower than the previous statistic, both, calculated over the old and new groups.



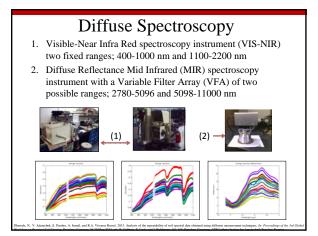

PROPERTIES	Field 1	Field 2				
LONGITUDE		Field 2	Field 3	Field 4	Field 5	Field 6
	-97.984	-98.255	-102.53	-97.572	-98.167	-98.356
LATITUDE	41.2747	40.8882	41.5547	42.1921	40.8427	42.4079
AREA, Ha	25.4	46.08	49.88	54.56	66.84	44.24
ield Elevation (El pparent Soil Elec om both layers sh eep (dECa) *	trical C		-	AG		y







Automated Soil Sensing Platform



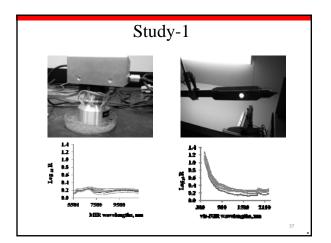
Soil Sensing with Spectroscopy

Numerous Studies

- 1. Vis-NIR vs portable MIR using 282 soils.
- 2. Evaluating a portable MIR on 44 moist soils.
- 3. Ex situ, Vis-NIR using 86 soils.
- 4. Ex situ Vs In situ, using Vis-NIR using 20 soils.
- 1. Texture; % Sand and % Clay
- 2. Soil Organic Matter (SOM)
- 3. Soil Organic Carbon (SOC)
- 4. Soil Total Phosphorus (STP)

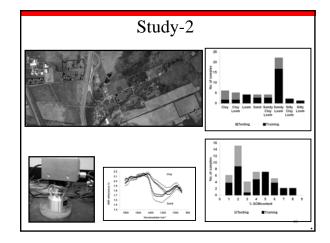
Methodology

Soil spectral data was collected in three replicates.

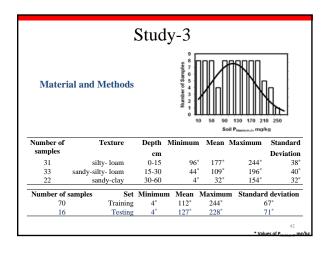

Spectral data was portioned into training and testing sets.

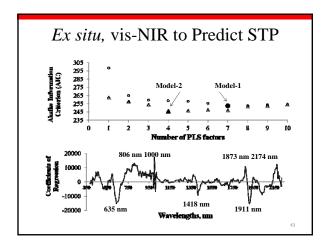
Calibrated models using testing set against laboratory measurements.

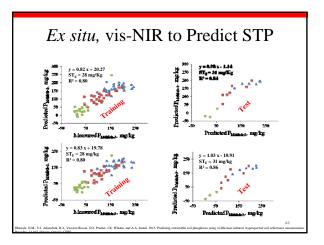
Models validated using leave-one-out cross validation on the training set and directly on the testing sets.

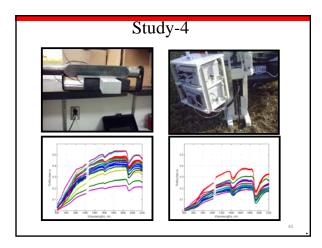

Performance indicators :

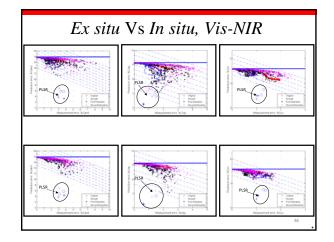
Coefficient of determination (R²), Root Mean Squared Error (RMSE), Standard Distribution of Errors (SDE), Mean Error (ME).




V	is-NIR	vs porta	ble MIF	λ	
18 19 19 19 19 19 19 19 19 19 19 19 19 19	leyina bas be				
Data set	Stats	Sand, %	Clay, %	SOC, 9	
Data set	Min	0	Clay, %	0.54	
	Min Max	0 86	4 74	0.54 3.91	
Data set Training	Min Max Mean	0 86 38	4 74 29	0.54 3.91 1.71	
	Min Max Mean SD	0 86	4 74 29 14	0.54 3.91 1.71 0.60	
	Min Max Mean	0 86 38	4 74 29	0.54 3.91 1.71	
	Min Max Mean SD	0 86 38 20	4 74 29 14	0.54 3.91 1.71 0.60	
	Min Max Mean SD Median	0 86 38 20 34	4 74 29 14 28	0.54 3.91 1.71 0.60 1.60	
	Min Max Mean SD Median Min	0 86 38 20 34 0	4 74 29 14 28 5	0.54 3.91 1.71 0.60 1.60 0.97	
Training	Min Max Mean SD Median Min Max	0 86 38 20 34 0 86	4 74 29 14 28 5 75	0.54 3.91 1.71 0.60 1.60 0.97 3.75	


Property, %	Data Set	No. of factors	R ²	RMSE	SDE	ME
1	Training	5	0.64	12.14	12.17	0.05
Sand	Testing		0.52	10.33	10.52	1.20
	Training	4	0.61	8.86	8.88	-0.03
Clay	Testing		0.70	7.79	7.92	-0.25
	Training	6	0.63	0.37	0.37	0.00
SOC	Testing		0.54	0.41	0.42	-0.02
Property, %	Data Set	No. of factors	R ²	RMSE	SDE	ME
	Training	15	0.74	10.40	10.40	0.14
Sand	Testing		0.72	12.73	12.40	2.95
	Training	7	0.79	6.57	6.58	-0.02
Clay	Testing		0.81	7.17	7.17	-0.50
	Training	12	0.62	0.38	0.38	-0.01
SOC	Testing		0.45	0.45	05	




		on Moi				
Sc	Performance Indicators					
Model calibration	Model validation	PLSR Factors	R ²	RMSE	ME	SDE
	,	and				
An in provining	Cross validation	3	0.74	11.81	-0.03	11.07
Moist training	Cross validation	5	0.81	10.12	-0.04	10.15
Air-dry training	Air-dry test set validation	3	0.90	8.58	-2.10	8.41
Moist training	Moist test set validation	5	0.82	11.65	-4.30	10.89
Moist training	Air-dry test set validation	5	0.80	11.98	-3.70	11.53
And your second	Moist test set validation	3	0.88	10.26	2.34	10.0.
	% C	Clay				
Air-dry training	Cross validation	3	0.65	9.48	-0.93	9.52
Moist training	Cross validation	5	0.79	7.27	-0.03	7.29
Air-dry training	Air-dry test set validation	3	0.88	10.50	-5.35	9.14
Moist training	Moist test set validation	5	0.91	7.82	-2.57	7.43
Moist training	Air-dry test set validation	5	0.84	9.32	-2.63	9.05
Air-dry training	Moist test set validation	3	0.89	10.00	-3.37	9.55
	% S	OM				-
Air-dry training	Cross validation	6	0.54	1.42	0.00	1.43
Moist training	Cross validation	6	0.49	1.48	0.01	1.49
Air-dry training	Air-dry test set validation	6	0.58	1.17	0.72	0.93
Moist training	Moisttest set validation	6	0.62	1.21	0.84	0.87
Moist training	Air-dry test set validation	6	0.82	0.76	-0.46	0.61
Air-dry training	Moist test set validation	6	100	2.24		1.97

