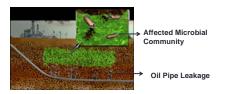
Development of an NDIR CO₂ sensor-based system for assessing soil toxicity using substrate-induced respiration

Jasmeen Kaur Dr. Viacheslav I. Adamchuk Dr. Joann K. Whalen Dr. Ashraf A. Ismail

Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, QC

Background


- Petroleum hydrocarbon pollution results from accidental discharge during transportation, leakage from storage tanks and pipeline runtures
- · Common approaches to determine petroleum hydrocarbons in soil
 - Gas chromatography techniques
 - · Eco-toxicological tests (due to bioavailability)

Hypothesis

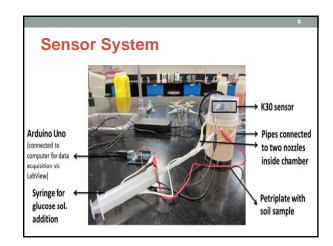
- Petroleum hydrocarbons have a significant impact on microbial community abundance, composition and diversity
- Thus, the soil microbial activity in a hydrocarbon-contaminated soil can be used as an indicator of hydrocarbon contamination present in the soil

Nanninieri et al. 1990: Anderson and Domsch. 1978

Soil Respiration

- $^{\circ}$ Soil micro-organisms can be quantified by measuring the soil ${\rm CO_2}$ production or ${\rm O_2}$ consumption
- · Basal respiration (BR)
- Substrate-induced respiration (SIR)
- Presently, evolved CO₂ is determined by a colorimetric reaction in gas absorbent alkali

NDIR-based CO₂ Sensors


- CO₂ absorption at 4.3 μm
- IR light source passed through narrow band optical filter

Objectives of the Study

- $^{\circ}$ To develop and evaluate an NDIR CO $_2$ sensor based system to measure substrate-induced soil CO $_2$ emission
- To investigate applicability of the system to distinguish between control soil samples and the samples contaminated with different concentrations of diesel

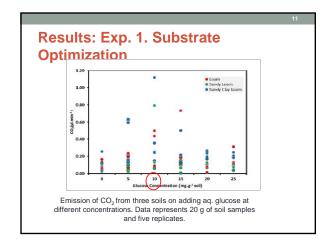
6

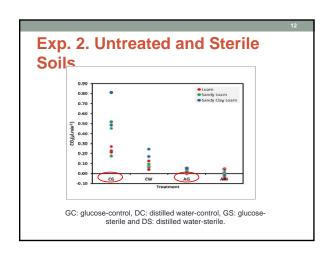
Soil Sampling

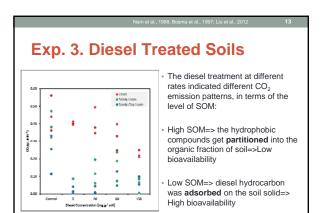
Sample No.	Soil Type	% sand	% silt	% clay	рН	%ОМ
1	Loam	36.50	40.16	23.34	6.90	63.27
2	Sandy Loam	62.38	24.60	13.03	5.85	7.76
3	Sandy Clay Loam	46.45	27.95	25.60	7.35	7.49

Experimentation

Experiment 1:

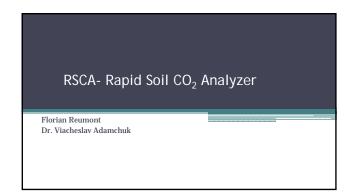

Substrate Optimization: 20 g air-dry (a. d.) soil samples were amended with a series of glucose concentrations (0-25 mg/g soil) in aq. solution and CO_2 emission was measured for 5 minutes

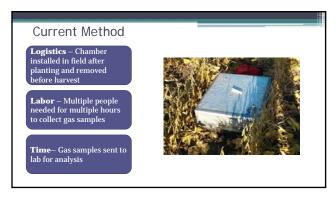

Experiment 2:

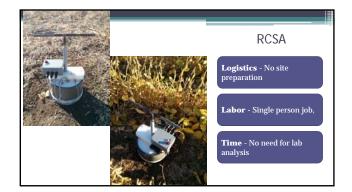

Performed to check the applicability of the designed system to distinguish between the soils with (control soils) and without microbial activity (autoclaved, sterile soils).

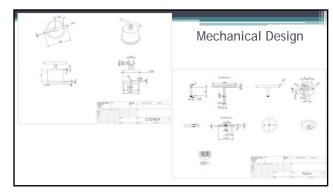
Experiment 3:

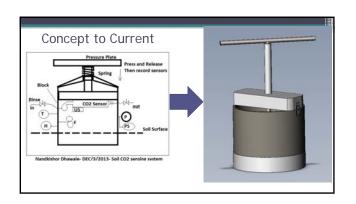
To evaluate the applicability of sensor to determine petroleum hydrocarbon contamination in soil. Five diesel treatments (0, 5, 20, 60 and 150 mg/g of soil) were applied to all three soils.

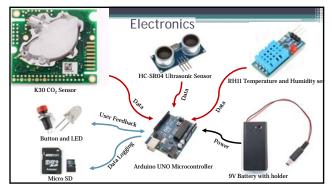


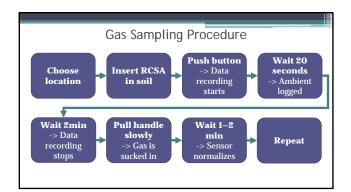


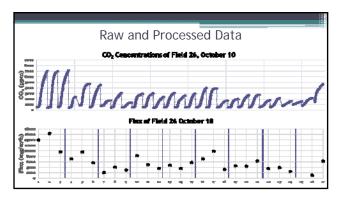

Conclusions

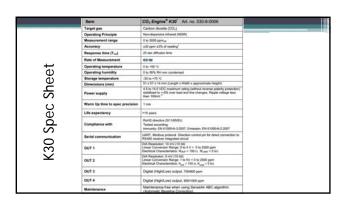

The results lie in favor of application of proposed ${\rm CO_2}$ sensor based system for measurement of substrate induced respiration and toxicity evaluation.


14









Improvements

- **Mechanical:** locking connectors, additional O ring seal, improved cutting disk, etc.
- Electronic: GPS module, real time clock
- **Feedback:** additional LEDs, LCD screen, adjustable logging time.
- • Sensors: 1+Hz CO_2 Sensor, pressure meter and valve, mixing fan

Questions?

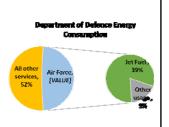
Optimization of A Military Waste-to-Jet Fuel Supply Chain in Nevada

Mohamed Leila, Ph.D. Candidate (Renewable Resources)

Department of Natural Resources Sciences Supervisor: Professor Joann Whalen Co-Supervisor: Professor Jeffrey Bergthorson

Content

1. Introduction


2.Research Question

3.Method

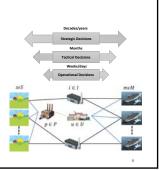
- 3 1 Parameters and Assumption
- 2.2 Mathematical formulation
- 3.3 GIS Screening
- 3.4 Implementation
- ise Study Results
 - 1.1 Optimal Network Configuration
- 4.2 Sensitivity Analysi
- 5 Conclusions

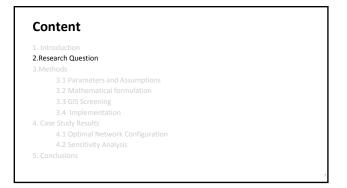
Introduction(1/4)

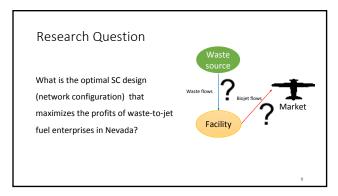
- General Problem: Oil dependency
- Special Problem: The United States imports 50% of its Jet Fuel requirements
- Why Jet fuel? special significance to the DoD
- Solution? Produce more jet fuel locally

Introduction (2/4)

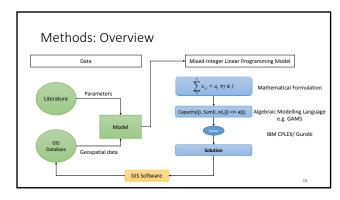
- Increasing conventional oil production is not a sustainable solution
- Biojet fuels, a class of advanced biofuels, are being considered to supplement JP-8/A-1
- Energy Security and Independence Act set targets for advanced biofuels production in the US

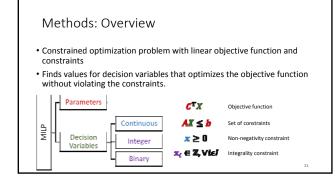

Introduction (3/4)

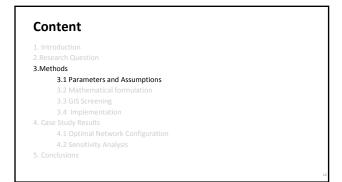

- Air Force Mandate: 50% of jet fuel consumption from renewable sources by 2016
- Navy Mandate: 50% of all fuel requirements from renewable resources by 2020



Introduction (3/4)


- Supply Chain (SC) optimization is a sub field of Operations Research
- Strategic SC decisions: Facilities locations, maximum capacities, technologies
- Tactical decisions: material flow, operating capacities





Parameters

Waste availability

- Per capita generation in Nevada
- Multiply by population in county
- Divide by number of transfer stations

Facility parameters

Modelled after Fulcrum Bioenergy

Estimates of jet fuel consumption per military installation

Assumptions

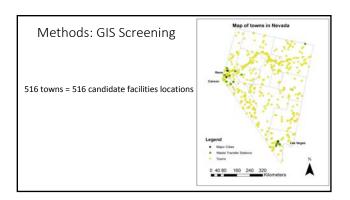
1.Facility maximizes jet fuel production 2.Waste is purchased at \$10/tonne

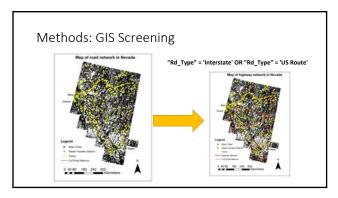
ts	Description	Parameter .	Banijika .	
)ci	Waste Transfer Stations		concernion lauter (ALEPT per tenna)	
ici	Facility locations	-	Toronthly color	
		Office	endenmapaty d'uny talky 1687	
mtM	Markets	omb.	minimum capacity of any facility in 1977	
Continuous Decision Variables		chin	once companing to MAPI per more	
8.	Revenue of facility ((S)	consta	code its requiring it to each contrapt contr	
		it:	anteri amatualisyana kalityyanyan Jusaning Myana Palina	
R _{total}	Total Revenues of the SC (\$)	-	تثنت موسائك بالماناة تحام	
Totalcost	Total costs of the SC (S)	per prices contain in deliveryor trees.		
Toost	Transportation costs (5)	opunit .	sport: spreadigrouts is dellaw per Hillmanilles	
		•	vereste finis (1927 per tem)	
FC	Fixed costs (S)	-	malaurupadyal ny ladig 1487	
ocj	Operating costs of facility j (\$)	sede	ukhouspalpe' ay lalliptilif	
Totoc	Total operating costs (\$)	ship	encer' busyaning 1. HEPT year under	
waste _{ij}	Amount of waste shipped from transfer station i to facility j (Tonnes)	emple	unieflampeling Line of wale per unier	
		-	Classic result in lating	
biofuel_	Amount of biofuel shipped from facility to	S.	Shipper from healthy least long to report et un	

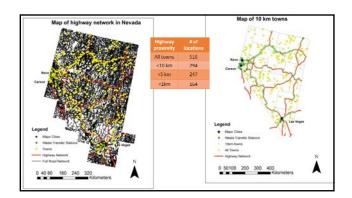
Content

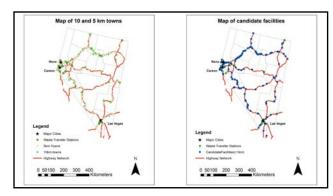
3.Methods

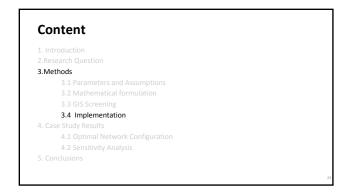
3.2 Mathematical formulation

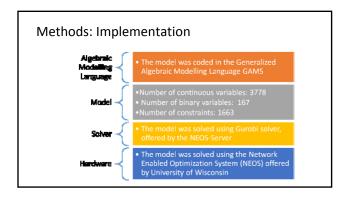

Mathematical Formulation: Objective Function

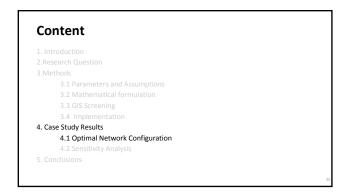

every
$$\mathbf{z} = \sum_{j=1}^{N} \mathbf{z}_{j} - \left(\mathbf{c}_{n-n} \sum_{j=1}^{N} \mathbf{c}_{n-n} \mathbf{c}_{n-n} + \mathbf{c}_{n-n} \sum_{j=1}^{N} \mathbf{c}_{n-n} \mathbf{c}_{n-n} \right) - \left(\mathbf{f} \mathbf{c} - \sum_{j=1}^{N} \mathbf{c}_{j}\right) - \left(\mathbf{p} \mathbf{c} - \sum_{j=1}^{N} \mathbf{c}_{n-n} \mathbf{c}_{n-n} + \sum_{j=1}^{N} \mathbf{c}_{n-n} + \sum_{j=1}^{N} \mathbf{c}_{n-n} \mathbf{c}_{n-n} + \sum_{j=1}^{N} \mathbf{c}_{$$

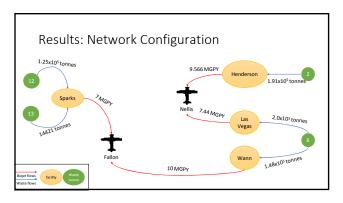

Content

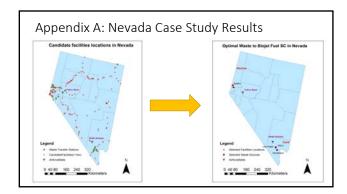

3.Methods

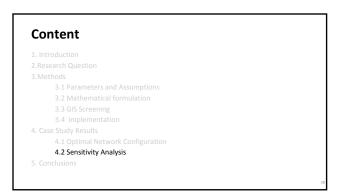

3.3 GIS Screening

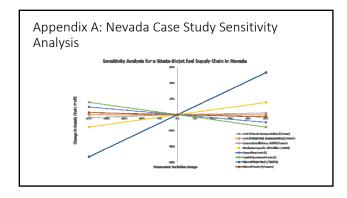


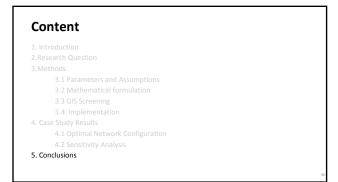












Conclusions

Methodological:

Prescreening of data in GIS environment significantly reduces the data points input to the optimization model, reducing computational burdens

- Four waste-to-jet fuel facilities are needed to meet the military demand in Nevada
- Biojet fuel selling price is the most influential parameter on waste-to-jet fuel supply chains in Nevada

Contact Information

Mohamed Laila
Department: Natural Resources Sciences, McGill mohamed.laila@mail.mcgill.ca