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Figure 1-1 The spatial distribution of paddy soils in the world

(Haefele etal., 2014)
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Figure 1-2 The spatial distribution of paddy soils in China
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Background

vis-Near Infrared Spectroscopy
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rapid, cost effective, non-destructive, no hazardous chemicals are used, and importantly,can measure a lot
of soil properties using a single spectrum.

Viscarra Rossal et al., 2011 Advances in Agronomy)
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N accomplished by holding a spectrometer stationary on a soil face.
“Staticin situ — "
— . - 4 ® bare optical fiber

Kooistra et al. (2003)
Stevens etal. (2008)
Barrett etal. (2002)

® contact reflectance probe
Waiser et al. (2007)
Viscarra Rossel et al. (2009)
Jietal. (2014)

® modified soil probe
Kusumo et al. (2010)
Ben-Dor et al. (2008)

Laboratory-based

Proximally sensed

vis-NIR measurement vis-NIR measurement

Sample collection, Transportation,
Drying, Grinding, and Sieving

In situ measurement
Rapid !
Controlled indoor condition Environmental effects
(such as ambient light, soil
moisture content, structure,
temperature, dust, contamination by
stones and excessive residues)

Prominmal

typically involves a spectrometer either enclosed within or
connected to (via fiber optics) an implement that is inserted
into the soil and pulled behind a tractor.

Christy (2008) Mouazen et al.(2005)
Bricklemyer&Brown (2010) Mouazen et al.(2007)
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Fig. 1-1. Comparison of prediction accuracy of soil properties
using laboratory, field in situ and on-the-go measured vis-NIR spectroscopy

Laboratory-based Proximally sensed

vis-NIR measurement | vis-NIR measurem

Sample collection,
Transportation, .
Drying, Grinding, and Sieving Rapid !

In situ measurement

Controlled indoor condition Environmental effects
(such as ambient light, soil
moisture content, structure,
temperature, dust,
contamination by stones and
excessive residues)

Accurate ?




Aim
Improving the estimates of soil organic carbon
using proximally sensed vis—NIR spectra

Removing the
envirommental effects
from the feld spectra

Fig. 2-1 The geographic distribution of the
study fields
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3. Proximally sensed vis-NIR measurement 4. Laboratory-based vis-NIR measurement
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Fig. 2-6 (a) the field and laboratory spectra and (b) their difference spectra of 104 paddy soil samples
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Fig. 2-1 The geographic distribution of the
study fields

China National Rice Research Institute
In each field: 8-16 sensing locations
A total of 104 sensing locations.
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Static in situ measurement of Paddy Soil with vis-NIR Spectroscopy

Drying
Grinding
and
| Sieving

1. Moisture measurement

oc:
dry combustion
at 1100uC with
amulti NIC
3100 (Analytik
Jena AG,
Germany)

5. Traditional chemical analysis

4. Laboratory-based vis-NIR
measurement
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How to improve the estimates of organic carbon
using proximally sensed vis—NIR spectra?

PART 1: Non-linear data mining algorithm

Research background and Review

Proximally sensed spectra VS, Laboratory-based spectra

Non-linear Removing the Using existing Chinese
data environmental effects | soil spectr rary to
mining from the field spectra predict soil carbon
algorithms I

eye;

1. Near Infrared (NIR) spectra are dominated by weak overtones and combinations of fundamental
vibration which are usually broad and weak and some of them are difficult to distinguish with the naked

2. Their location is also often slightly shifted from the exact expected location because real molecules do not

behave totally harmonically (Bishop et al., 1994);

!

multivariate calibrations algorithms

Linear calibration algorithms

Dalal & Henry (1986) ‘' Daniel etal. (2003)

Changetal. (2001) Shepherd & Walsh (2002)

McCarty & Reeves (2006) Bilgili etal. (2010)

a (2004) Brown etal. (2006)

arra Rossel & Behren (2010)
(2009)

(2010)

(2012)

006)
(2007)
(2011)

Prediction of soil attributes using
laboratory-based vis-NIR spectra

Data mining algorithms

Fystro (2002)
Stevensetal (2008)
Morgan et al. (2009)
Kooistra etal. (2003)
Udelhoven etal. (2003)
Gras etal. (2004)
Kusumo etal. (2010)
Kuang & Mouazen(2011)

Mouazen (2010)

Prediction of soil attributes using
proximally sensed vis-NIR spectra

Wold et al. (1983)

PLSR aims to link the centred response
varable vector, y, to the matrix of centred
predictors, X, through k latent variables
(factors) by:

N=tp+t g + By

Y=ha Tt

After the model parameters are

estimated, they can be combined into the
final prediction model as

y=bo+x;b;

Where by is the intercept anc ﬁj are
regression vectors.

PLSR LS-SsVM

Suykens et al. (2002)

LS-SVM is an optimized algorithm based on
standard SVM.

It is an is a kernel-based learning algorithm.
The kernel-based learning methods use an
implicit mapping of the input data in a high
dimensional feature space, a special type of
hyperplane defined by a kernel function, in
which a regression model is built.

The LS-SVM uses nonlinear rearession

function:
Hx)= Za K(x.x;)+by
=1
Where K(x,x;) is defined by the kernel
function. We used radial basis function kernel
(RBF), which is the typical general-purpose

kernel: 20,2
K(x,x;) =e ==l 2=

PART

ol ear data mining algorithm

1. Near Infrared (NIR) spectra are dominated by weak overtones and combinations of fundamental

vibration which are usually broad and weak and some of them are difficult to distinguish with the naked
eye;

2. Their location is also often slightly shifted from the exact expected location because real molecules do not
behave totally harmonically (Bishop et al., 1994); l

‘ multivariate calibrations algorithms ‘

‘ Non-linear Data mining algorithms

PART 1: Non-linear data mining algorithm

1. Near Infrared (NIR) spectra are dominated by weak overtones and combinations of fundamental

vibration which are usually broad and weak and some of them are difficult to distinguish with the naked
eye;

2. Their location is also often slightly shifted from the exact expected location because real molecules do not
behave totally harmonically (Bishop et al., 1994); l

Linear calibration algorithms
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‘ multivariate calibrations algorithms ‘

Linear calibration algorithms

PART 1: Non-linear data mining algorithm

Assessment of prediction accuracies :

Unit Mean SD  Medium Max Min (Chang et al., 2001)

RPD >2.0: good,
RPD of 1.4-2.0 : moderate
RPD <1.4 : unacceptable.

OoC g/kg 16.93 852 1457 3629 4.12

Table 3-3 prediction accuracy of soil organic carbon (g/kg)

Algorithms Measurement calibration (n=78) validation (n=26)
Conditions R? RMSE R? RMSE RPD
PLSR Laboratory-based 0.865  3.121 0.809 3.955 2.22
Proximally sensed 0.726  4.448 0.744 4598 | 1.91
LS-SVM  Proximally sensed 0.999  0.180 0.799 4.230 | 2.08

(Ji et al., 2014)
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PART 2: removing the effects of environment from proximally sensed spectra

(III) EPO, External parameter orthogonalisation

EPO algorithm projects all the soil spectra orthogonal to the space of unwanted variation
(i.e. moisture), and thus the variations of soil moisture can be effectively removed.
riiviiebete iyttt
H ]

I natri form, the spectra X (sine nx m) can be written a5

X XPXQ+R

w0 ¥io 0w mw

r i3 the projection matrix (size mx m) of the usehd part of the
Lt spectra: X' = NP
Pre- Q 15 the projection matrix (e mxm) of the not useful pan
processing influenced by maisnare of the spectra: X* = ¥ and
P ® is the residual matrix (size ax m|
Tramfcemation The siem of EPD is (o obtain the webd spectra X = X1 - ), while
L matrix () can be written a5 Q=G G
ms
o calibration
X=XP )\ ; i | [WRofs
Transtormed 45| = v
specium A e >
w0 oo w0 o a0

Fig.4-1 An overview of the external parameter orthogonalization (EPO) algorithm
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PART 2: removing the effects of environment

m proximally sensed spectra

(iv) Spectral transfer methods : DS pirect standardization

Laboratory-based L Proximally sensed
vis-NIR spectra s m - vis-NIR spectra

DS transfer set ‘

O —

Xy = [(Xgoia) = XgogB + E

Prediction of SOM

PART 2: removing the effects of environment from proximally sensed spectra

How to deal with the effects of environment
on proxmallx sensed vis-NIR
spectroscopy??

(i) improve the leverage of multivariate calibrations by ‘spiking’;

(ii) Spectral classification according to the different amounts of water or a
related attribute, and developing calibrations separately for each class
(Mouazen et al., 2006; Nocita et al., 2013);

(iii) External parameter orthogonalisation (EPO)- remove the effects of
‘unwanted’ spectral parameters from the spectra;

(iv) improve the similarity between field and laboratory spectra using spectral
transfer algorithms.
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PART 2: removing the effects of environment from proximally sensed spectra

iv) Spectral transfer methods  instrumental standardization
(Wangetal., 1991)

v'make the spectra recorded in  one instrument similar to that recorded in
another instrument. ;

v'make the spectra recorded in the field environment similar to that recorded
in the laboratory condition;

European Journal of so' science

European Joumat of Soil Science. 2015 ok 10,111 Vifss 12238

Accounting for the effects of water and the environment on
proximally sensed vis—NIR soil spectra and their
calibrations

A.Viscamwa Rossei® & Z. Sui®
fied Remvote Sensing and Information Technoiogy, Ce
5. "CSIRO Bruce E.

ler Laboratory, Land and Water Fla

Environmental and Resource Scie;

Universis
GPO Box 166,

PART 2: removing the effects of environment from proximally sensed spectra

104 soil samples
v
Laboratory-based
transfer set: vis-NIR spectra
*Which samples ?| Kennard-Stone method
*How many Transfer samples >
| (t=5, 10, 15, ......, 70) 2 v spectral similarity
samples Including both field & lab spectra 2 ., o . foc
1 3 prediction accuracy o
¢ ™, e (R2,RMSE,RPD)
- :
g3 1
g g E' Iranater samples Iranster samles | | Transferred spectra by the
. . -
Z25 f t H two methods
Iz !
s :
Nimentianzl - i
! 1
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Fig. Principal component scores plot of
the 50 transfer samples (black discs)
selected from 104 samples (grey discs)

. e
Fig. The eld (I Fig. (ight grey),
transferred field spectra (red)

EPO DS

v and Ds-

PART 2: removing the effects of environment from proximally sensed spectra

(iv) Spectral transfer methods : PDS piecewise direct standardization

In DS, each wavelength i of the laboratory spectra is related to all wavelengths of the
field spectra simultaneously .

In PDS, each wavelength i of the laboratory spectra is modelled by a small wavelength

window (ws=2i +1) around the same wavelength i of field spectra.

14
~Laboratory

12 Field
s kit
= Figure 1 Overview of
@ o the piecewise direct
3 0.6 \\ moving © standardization (PDS)

- algorithm.
04 e |
02 1 S

400 B00 12040 1600 2000 2400
Wavelength [ nm

PART 2: removing the effects of environment from proximally sensed spectra

400 BOD 1200 1600 2000 2400
Wavelength | nm

Figure 4 First-derivative absorbance spectra of three samples selected at random from the
42 validation samples: field spectra, laboratory spectra and the field spectra standardized
with the piecewise direct standardization (PDS) algorithm

(Ji et al., 2015b, EJSS)

PART 2: removing the effects of environment from proximally sensed spectra

Table 4-1.  Statistics of soil organic carbon content of 104 paddy soil samples

dataset n mean Stdev medium max min Skew
all 104 1693 852 1457 3629 412 4122
calibration 70 17.82 9.07 1496 36.29 4.13 394.14
validation 34 1509 7.05 1423 3362 4.12 273.04

Table 4-4.  PLSR prediction accuracies of SOC content using EPO-, DS-and PDS-transferred field spectra

Calibration Dataset ¥ Validation Dataset -, RMSE
Method (N=70) t (N=34) R o, (0cw) RPP
Lab70 / Lab34 0.86 0.099 2.31
Original
Field70 / Field34 0.78 0.119 191
EPO Field 70_EPO 50 Field 34_EPO | 0.80 0.105 2.18
DS Field 70_DS 50 Field34_DS | 0.83 0.102 2.24

PART 2: removing the effects of environment from proximally sensed spectra
(iv) Spectral transfer methods : PDS
In PDS, each wavelength i of the laboratory spectra is modelled by a small wavelength

window (ws=2i +1) around the same wavelength i of field spectra.
14

Laboratory
124 Field
i,
o A A y
0.8 4 B —
= 06 4 maving o
0.4 -t o
nz y— -
400 B00 1200 1600 2000 2400

Wavelength / nim
Figure 1 Overview of the piecewise direct
standardization (PDS) algorithm.

Figure Structure of the diagonal
transfer matrix B for the piecewise
direct standardization (PDS) algorithm
(Ji et al., 2015b, EJSS)
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PART 2: removing the effects of environment from proximally sensed spectra

[

DS I .
“PDS ) =20

0 1 20 30 4 50 60 TO 80 o 5 o 15 20

The number of the transfer samples ¢
Figure 5 Prediction accuracies obtained when
different numbers of transfer samples were used
in PDS and DS.

Observed SO0

Figure 6 Scatter plot of the predicted
values and observed values of SOC.
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PART 3: Using Chinese soil spectral library to predict soil carbon rapidly

Large-scale soil spectral databases

(laboratory-based)
Soil vis-NIR spectra Measured vis-NIR spectrg

0% N ~

Regression models
= 9

Soil properties Unknown propertied
It is of great significance to remove the effects of environmental factors from
spectra recorded under field conditions, so that spectroscopic calibrations derived
in laboratory studies can be used with field spectra to predict soil properties.

B McGill)

PART 3: Using Chinese soil spectral library to predict soil carbon rapidly

Table 5-2 Statistics of soil organic carbon (SOC) of 104 paddy soil samples
and 1581 samples from the Chinese soil spectroscopic database (CSSD).

Category N Mean SD Min. Median Max. Skewness

CssD 1581  13.49 6.68 0.97 13.15 43.41 203.31
Paddy soil 104 16.93 8.52 4.12 14.57 36.29 412.2

Chinese Soil Spectral Database
N=1581

¥ 2

vis-NIR spectra Soil Organic Carbon

PLSR model |
|
| !

104 field spectra
Processed by EPO method

‘ Record R?, RMSE, RPD to compare the two methods. ‘

104 field spectra
Processed by DS method

PART 3: Using Chinese soil spectral library to predict soil carbon rapidly

Large-scale soil spectral databases

Shietal.

(2013)

China Wangetal.
N=1581 (2014)

(shi et al., 2014)
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PART 3: Using Chinese soil spectral library to predict soil carbon rapidly
Chinese Soil Spectral Database (CSSD)

Basic information

®The CSSD comprised 6000+ soil samples collected from 22 provinces in
China, representing 20 orders of the China Soil Taxonomy;

®So0il samples were taken from the topsoil (0-20 cm).;

@ Soil samples were air-dried and sieved (< 2 mm);

® Soil samples were measured the diffuse reflectance spectra in the 350—

2500 nm range with an ASD Fieldspec ProFR vis-NIR spectrometer with a high
intensity contact probe;

@ The spectra were measured under laboratory conditions;
©® Thel04 samples that we describe in this study were not included in the CSSD.

& McGill

PART 3: Using Chinese soil spectral library to predict soil carbon rapidly

Spectral pretreatment
> kepp 420-2425 nm >log,,(1/Reflectance)
> Saviziky-Golay smoothing (2+11) >Mean center
> 15t derivativeZ5 1 >SNV

Leave-one-out cross validation
Number of PLSR factors=15

Table 5-3 Validation statistics for predictions of soil organic carbon (SOC) with spectra
from the Chinese soil spectral database (CSSD).

RMSE
Methods  Calibration dataset t* Validation dataset R? RPD
/log,, (OC g/kg)
Lab 104 0.813 0.114 211
Original CSSD
Field 104 0.139 1.042 0.23
EPO transferred
EPO 50 EPO transferred Field 104 0.571 0.161 1.50
CSsD
DS CSSD 50 DS transferred Field 104  0.800 0.117 2.06

& McGill)



© field104 RPD=0.23
~ 14 |=l[abl04 RPD=2.11
© " ratment
= 11 >log,,(1/Reflectance)
g5 L -11) »Mean center
E% I £t >SNV
i A
B B
g 02 oso o%%@%:& 5 5 validation
= 6 ° © °@0o °6° ‘actors=15
01 % °
° e
0.4 - 5f soil organic carbon (SOC) with spectra
0.5 0.7 0.9 11 13 15 11 tral database (CSSD)
Observed log,,(OC/ g ke™!)
— — RMSE
Methods  Calibration dataset t* Validation dataset R? RPD
/logy, (OC g/kg)
Lab 104 0.813 0.114 211
Original CSsD .
! Field 104 0.139 1.042 0.23
EPO transferred )
EPO 50 EPO transferred Field 104 0.571 0.161 150
CSSD
DS CSSD 50 DS transferred Field 104  0.800 0.117 2.06
PART sing Chinese soil spectral library to predict soil carbon rapidly

Procedures for field-based spectroscopic predictions:

‘ Proximally sensed spectral measurements ‘

Kennard-stone algorithm

‘ transfer set: at least 50 samples

.4

‘ Transfer samples: lab scanning ‘

.4

‘ Transfer parameters ‘

‘ Prediction of
‘ soil properties

The Existing
spectral library
(lab-recorded spectra)

‘ DS transfer: all field spectra

Thank you!

WENJUN JI | POST DOC
DEPARTMENT OF BIORESOURCE ENGINEERING

© field104 RPD=0.23 1t oo oo -
— 14 |=labl04 RPD=2.11
o 4 EPO RPD=1.50
i —14
N 11 B
S o
) e . e
:—% 0.8 sant § .
= 05 > 5!
e o ome % e || 3
2 ° Zos
Pl e g |1
01| °s C o 9% % &0.6
° © °
© o0 ° a
-0.4 04
05 07 09 11 13 15 17 LTRSS T
Observed log,(OC/ g k™) Observed 10g,,(0C /g kg)
) . o RMSE
Methods ~Calibration dataset t* Validation dataset R? RPD
/log,, (OC g/kg)
. Lab 104 0.813 0.114 211
Original CssD i
Field 104 0.139 1.042 0.23
EPO transferred .
EPO 50 EPO transferred Field 104 0.571 0.161 150
CssD
DS CSSD 50 DS transferred Field 104  0.800 0117 2.06
Summary
@
Non-linear Removing the
data environmental effects
mining from the fleld specira
algorithms

Improving the estimates of soil organic carbon
using proximally sensed vis—NIR spectra

Using Chinese soil spectral library to predict soil carbon rapidly

Table 4. C ison among the of external ization (EPO),
direct standardization (DS), piecewise direct standardization (PDS) and spiking.
EPO DS PDS _spiking
If transfer samples are needed Y Y Y Y
Jietal 50 20
(2015b) (62,42) (82,42)
Viscarra Rossel et . 7
Number (2009) (892, 39)
of Minasny et al. 60
transfer (2011) (271, 20)
samples
Geetal. 77
needed - - -
(2014) (2017, 58)
Jietal 50 50 50
(20158) (1581, 54) (1581, 54) (1581, 54)
Spectral pre-treatment N N __YoaN N
Re-calibration N N YaN ¥
Note: the numbers in parentheses represent the number of samples from the calibration
and validation sets, respectively.




Quantification of Bitumen in
Remediated Tailing Soils Using
Reflectance NIR Spectroscopy with
Partial Least Squares Analysis

, supervised by Dr. Ashraf Ismail, Food Science & Agricultural Chemi

Background — map of world oil reserves & consumpti

US & Chin
30 miffion barrels
Venezuela (20%

Map of world oil reserves,

Background - tailings ponds

1.5, 3.2 (2019), 4 (million barrels)

“+170 km? (2012), 1.5 times the size of Vancouver, still
growing...

<*Problems: land disturbed; large water consumption;
leakage...

<+ Energy Resources Conservation Board (ERCB) Directive 74
(2009): clean up soil, water for suitable vegetation

~ Alberta Government Said “STOP!”

.
Background o sands, talings, remediation

Table of contents

Background - oil sands & tailing soils |-

% Heavy, viscous, not free-flowing

<« “Oil sand”, mixed with sand and clay minerals

<« Each grain of sand is surrounded by a layer of water and a
film of bitumen

<+ Steam extraction:

*  Bitumen slurry -—-upgrading;

« Tailings (sand, water, bitumen residue) — clean up

(remediation)

Background — remediation

» Gradek Energy: Reusable Hydrocarbon Sorbent (RHS) to remove bitumen
residue from soil.

» Fast and on-line hydrocarbon content monitoring method is required




Near-infrared (NIR) spectroscopy

> NIR spectroscopy coupled with multivariate calibration has become
increasingly important for process analysis in many fields.

Non-invasive, little/no sample preparation, rapid

at that wavelength is absorbed

Interactions between light and matter are wavelength-dependent and
amount of light absorbed is proportional to concentration. Therefore, it
can be used for quantitative chemical analysis.

The light radiated onto material may be reflected, absorbed or
transmitted.

R |

Principle: light wavelength = transition energy of the vibrated bond, light

b

Reflectance NIR spectroscopy of hydrocarbons

» Hydrogenic bonds (C-H, 93% of bitumen) are NIR active (4000 — 12000
cm, 700 - 2500 nm)

No sample pretreatment required

Can directly measure samples

Chemometrics is required: Calibration model is built by modeling the NIR
absorption against reference data, which is determined by traditional
chemical analysis

Model can be used to predict unknown samples without further
chemical analysis

Objective

0 Establish rapid, on-line method for hydrocarbon
analysis in remediated tailing soils using reflectance
NIR spectroscopy coupled with Partial Least Squares

= (PLS) calibration model

Current method to quantify bitumen

» Most common method in use today:

Chloroform extraction (Soxhlet) ~ solvent evaporation >
chloroform re-added to dissolve bitumen — »  determined by FTIR
spectroscopy (2930 cm™?)

> Drawbacks:

i. Not amenable to on-line or even at-line analysis
ii. Long waiting periods for results

iii.High cost per sample

Due to these drawbacks, a new low-cost on-line method for assessing
bitumen in soil, is greatly needed

—————y

NIR or MIR ?
NIR (12,000 - 4000 cm?)
Lower intensity (direct
measurement)
Vibrations involving hydrogenic
bonds are NIR-active

> Can use thick samples or long
optical fibers (on-line or at-line
applications)
Overlapping peaks due to » Spectra can be interpreted
combination and overtone modes, BTl
= complex chemometric methods LEE7 10 Sl s CEEE5

are required)

MIR (4000 - 400 cm1)

Sample pretreatment may be
required (high signal intensity)

Almost all vibrations are IR-active

Uses short pathlengths or short
optical fibers (at-line
applications)

J

Methodology




Methodology

« Soils (n=32) were dried, ground
and passed through 2 mm sieve
Each sample was separated into
two subsamples

One subsample was submitted
for chemical analysis (total
combustion)

One subsample was scanned
using Tango (Bruker, reflectance,
4000 - 11500 cm™?, 16 cm™*
resolution, 64 scans). Each
sample was scanned in duplicate
(shake, reload)

Software: DataAnalysis

Result — spectral interpretation

NIR spectra (1% derivative)
— pure bitumen & dried tailing soil

Clayband
4450~ 4412 cm-1

{
|4l

Red: pure bitumen

Spectral pretreatment —
1t derivative 1+t deri

« 1 derivative (11000-4000 cmt):
Remove baseline shifts, resolve
overlapping peaks
Disadvantages: noise enhanced,
difficult spectral interpretation
Higher-order derivatives are not
common in practice

Additive effect: simple baseline shift
—_——

NIR spectra — pure bitumen & dried tailing soil

Blue: bitumen
Red: tailing soil

NIR spectra (1¢t derivative) of tailing soil before and
after process showing change in hydrocarbon:clay
ratio

- —— =

Red: before
Green: after




Results — soil classification

Soil classification — HCA (broad region)

Sample heterogeneity

SO 003 COM TR 1
FESAADER SON_0003 COMTROLZ
~G 2

Green: grouped well it Lo
Purple: mixed MEK SOIL_ 0964 COMTROL- 1

13/32 (40
grouped together,
rest mixed up.

Soil classification using Hierarchical Cluster Analysis
and Principal Component Analysis

» Cluster soils into two groups: before and after remediation.
» Based on chemical variation (hydrocarbon).

> Samples: 32 soil samples (64 spectra) were collected from
different batches before and after remediation process

> Spectral pre-treatments (1t derivative) was performed prior
to HCA and PCA to minimize the effects of physical variations
that can mask the chemical variations.

Soil classification — HCA (optimized regions)

* Cluster two kinds of
soils: control & post
processed

+ Based on optimized
regions

Yellow: control
Blue: post processed

Soil classification — PCA scores plot (PC2 vs. PC3)

] 1

PC 2
separates
soils well




Results — calibration model

Soil and the 1%t derivative NIR spectra

g L
oy

Hydrocarbon PLS - PRESS

Tide

Factors: 7
RMSECV = 1.53

Coefficient of
variation:
5-11%

Total carbon content in dried tailing soils

mmH:

=

—

Hydrocarbon content NIR calibration based on total
combustion values

T |

Prediction of hydrocarbon content of unknowns
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Conclusion

» A PLS calibration model for the prediction of hydrocarbon content of tailings
samples was developed, with r? = 0.91, 1.51% RMSECV, in 13-26%
hydrocarbon content range

Principal component analysis in the selected region successfully clustered
control and post processed groups based on the chemical difference
reflected in the spectra.

These preliminary results indicate the potential utility of reflectance NIR
spectroscopy as a fast, nondestructive and real-time monitoring method for
tailings remediation processes.

Several factors can influence the accuracy of the NIR method, such as
sampling, instrument, experiment, and modeling. The effects of these
factors will be carefully studied and minimized (e.g. through appropriate
sample presentation, math pre-treatments, etc.).
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