

Computer-vision guidance extension for inter-row cultivators

Trevor Stanhope
M.Sc. Candidate, Bioresource Engineering
McGill University

Introduction

Inter-row cultivation is essential to organic producers

Weed prevention

Soil aeration

Increase in cultivation as a practice

Mechanical rod sensors are unreliable at early crop stages (< 15 cm)

RTK GPS integration is expensive

Computer-vision is relatively low-cost and has been shown to be viable by research

Objective

To develop a computer-vision extension for existing cultivator guidance systems which meets the following constraints:

 $\textbf{Robust} \rightarrow \textbf{various field and light conditions}$

 $\text{Versatile} \rightarrow \text{interfaced with different systems}$

 $\mathsf{Low\text{-}cost} \to \mathsf{non\text{-}specialized} \ \mathsf{components}$

System Design

Intel Atom D525, 1.8 GHz, 64GB SSD

Two cameras

640x480, scaled to 320x240 (speed)

25 FPS max, throttled to 15 FPS

24 IR LEDs for low-light illumination 1000 mm height at 15° incline (~1 mm/px)

PWM microcontroller with logic level

converter (LLC)

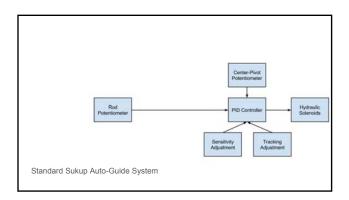
Developed a Python application using OpenCV which runs on an embedded

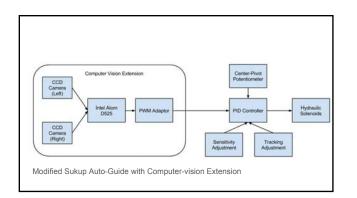
Testing Equipment

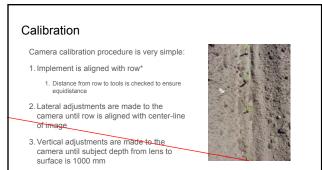
Hiniker 12-row heavy cultivator

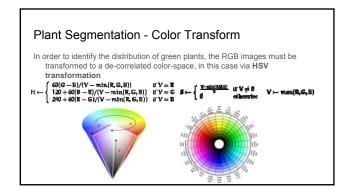
Fendt Vario 890

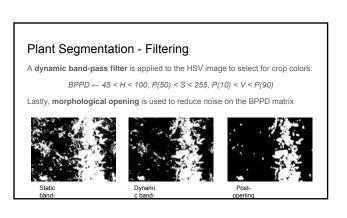
Sukup Auto-Guide hydraulic hitch

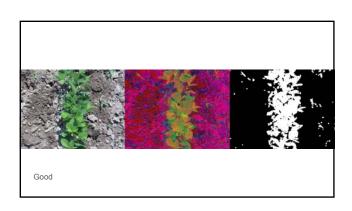


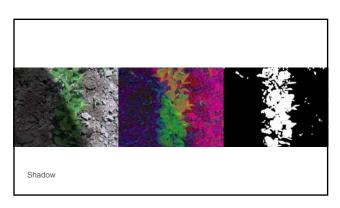


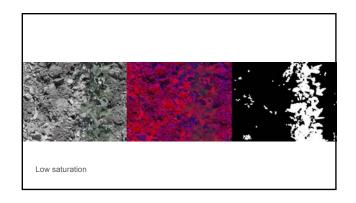


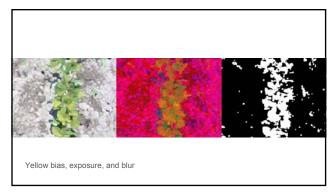


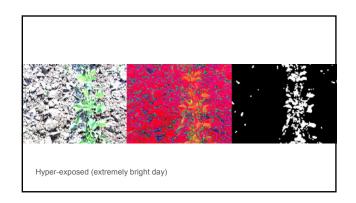


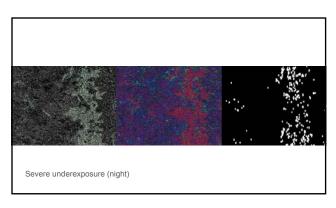


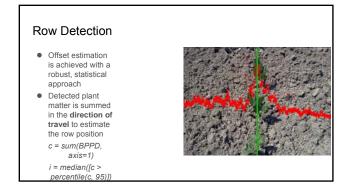


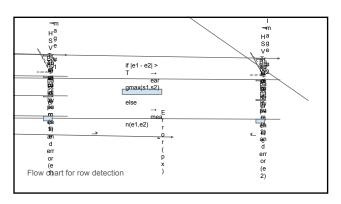












Electro-Hydraulic Control

Actuation of the two 32-in stabilizers on the cultivator was conducted via a Proportional-Integral controller.

An 8-bit PWM device integrated with a logic-level converter mapped the signal to the operational range of 0.1 - 8.0 V

u = P * e + I * mean(e[-15]) b = limit(u, 0, 255)v = map(u, 0.1, 8.0)

Data Collection

Tested on corn and soybean crops at Agri-Fusion (St-Polycarpe, QC)

Tractor was manually operated \rightarrow source of random error

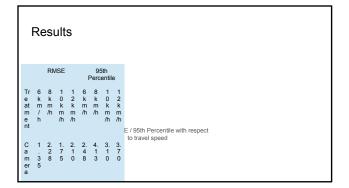
Straight drilled fields using StarFire 3000 RTK

Organic cultivars, i.e. no spraying was conducted

Four (4) travel speeds were tested \rightarrow 6, 8, 10, and 12 km/h

Four (4) crop stages were tested \rightarrow <10, <15, <20, and >20 cm

Total of 48 trials*



Bonneterre (Phase 2)

After the success with Agri-Fusion, our group was approached by Bonneterre, another large-scale organic producer in Quebec.

Three (3) more systems were built with several design revisions:

Non-angled camera

Fully weather-proof wiring

ABS enclosure

Updated code-base and re-tuned control parameters (SunCo AcuraTrak)

Mounting bracket for camera

In-cab Display

Minimalistic

Basic operator information:

Output voltage

Estimated offset

Direction of

adjustment Live video feed

VESA standard

mounting 12V DC power

Demo video of Agri-Vision interfaced with the Sunco AcuraTrak

Conclusion

System has met the stated objectives:

Robust

Versatile

Low-cost

Computer-vision outperformed mechanical at 10 cm and 15 cm

Mechanical demonstrated equal performance at 20 cm and out performed computer-vision at >20 cm

This technology has received significant interest from producers

A Mk.III model is under development for Sunco (manufacturer of AcuraTrak)

Estimation of tractor ground-speed with SURF keypoint matching

Trevor Stanhope
M.Sc. Candidate, Bioresource Engineering
McGill University

Introduction

Emerging applications for computer-vision on agricultural implements

Row-crop cultivation

Strip tillage

Post-harvest spraying

Motion feedback is very useful for such applications

Oriontatio

Resnonsivenes

Incorporating speed detection into these systems can be problematic

RTK GPS can be expensive

Keypoint Matching

Keypoint matching is the process of extracting feature descriptors from multiple images and determining consistent pairs (e.g. via knn-Matching)

Several mathematical algorithms exist for producing keypoints

SIFT

ORI

ORB and SURF are >3x SURF is very good at ha

Objective

Evaluate the effectiveness of a computer-vision system for estimating ground speed of an agricultural vehicle using the SURF algorithm with a single, low resolution camera.

Data Collection

Six (6) surface types

Pavemen

Gravel

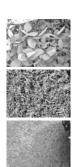
Soil / Residue

Turf Grass Hay Grass

Hay Gras

For each surface type, five (5) videos were collected

0 km/h to 18 km/h to 0 km/h in ~45 seconds

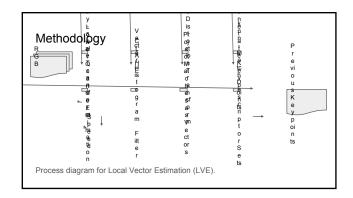


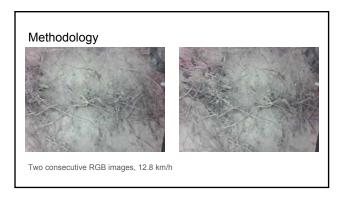
Data Collection

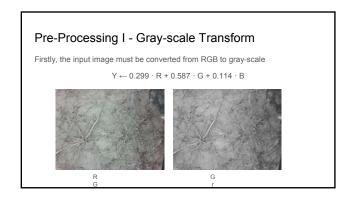
John Deere Gator 850D

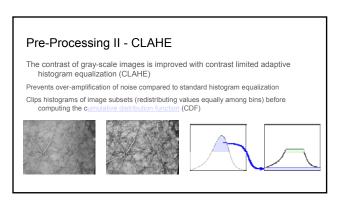
Trials conducted in high gear
640 by 480 px CMOS camera
1000 mm above surface
25 frames-per-second

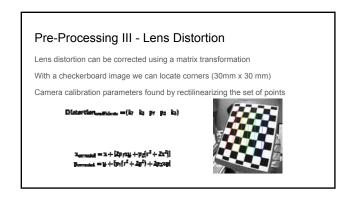
Coverage height measured

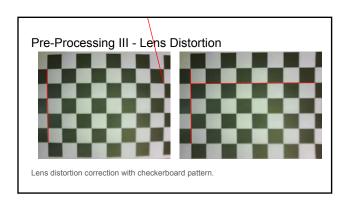


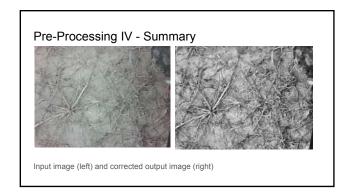


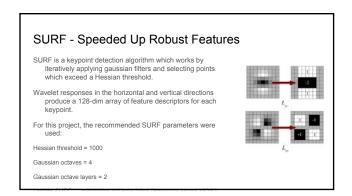


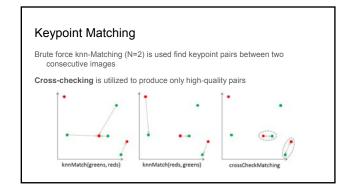


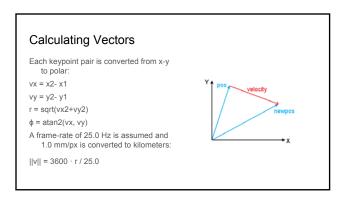


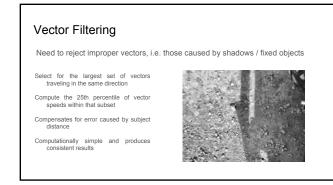


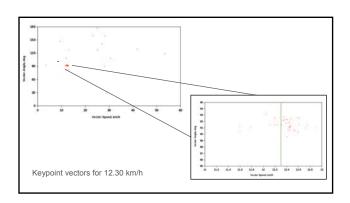


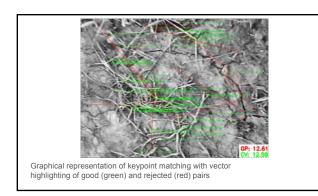


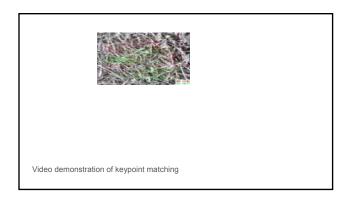


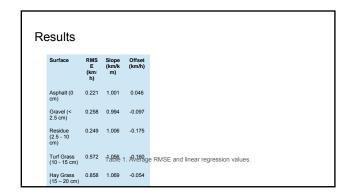


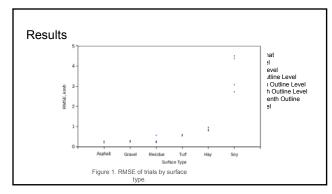


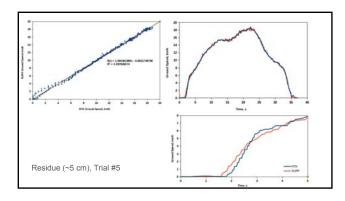




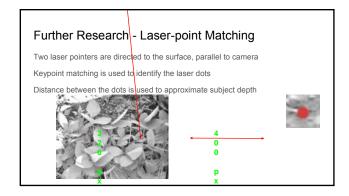








Conclusions Sufficient accuracy in the operational range of most agricultural implements (0 km/h to 12 km/h) Noticeably different behavior than RTK during acceleration SURF algorithm was capable of 2 - 6 Hz Accuracy degrades with surface depth variability, solved by sensor fusion: Stereo-vision Time-of-flight / LIDAR Ultrasonic Laser-point matching



Further Research - ORB vs. SURF

SURF
ORB

Patent
Opensource
protected
Theoretically
Only capable of faster than SURF
2 - 6 Hz
Poor matching
With blurring
With blurring
Research Question (Part II): Which keypoint matching algorithm is best-suited for real-time ground speed estimation, SURF or ORB?

Questions?

A QUICK-INSTALL TRACTOR GUIDANCE SYSTEM RELYING ON COMPUTER VISION

Antoine Pouliot, Trevor Stanhope, Viacheslav Adamchuk Bioresource Engineering Department of McGill University

PROJECT OBJECTIVE

- To design a camera-based automated guidance system capable of guiding an unladen agricultural tractor within a desired path (crop row) at speeds between 1 m/s and the maximum practical operating speed for the tractor (5 m/s).
- The system also has to meet the following requirements:
 - Not restricted to a specific crop or task
 - Compatibility with all agricultural vehicles equipped with power steering
 - Easy to install within minutes
 - Inexpensive

DESIGN REQUIREMENTS

Plant Segmentation

- RGB images must be filtered to distinguish plant matter from soil
- Capability to handle different crops (e.g. soybeans, corn)

Ground Speed Measurement

- Enough keypoints must be matched to measure progression between frames
- Capability to handle poor lighting (e.g. shadows)

Row Detection

- The crop row must be determined after plants have been identified
- Capability to handle high weed density and inconsistent rows

Vehicle Control

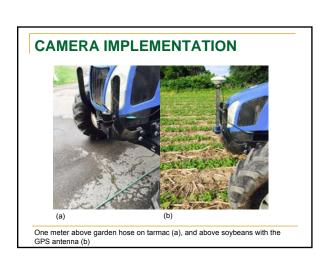
- The guidance adjustments must be smooth and not exhibit hunting oscillations
- Capability to handle rows with 5 cm error

SYSTEM COMPONENTS

- Rugged Camera
- Onboard vehicle computer
- Stepper motor, encoder and mounting hardware
- Joystick and dedicated microcontroller
- HSI band-pass plant detection algorithm
- SURF ground speed estimation
- RTK-level GNSS receiver (for performance evaluation)

Camera, onboard computer, steering wheel hub adapter, and joystick

SYSTEM DIAGRAM GNSS Receiver CCD Camera CCntral Processing Unit Stepper Motor Controller Stepper Motor Controller Encoder Steering system diagram.

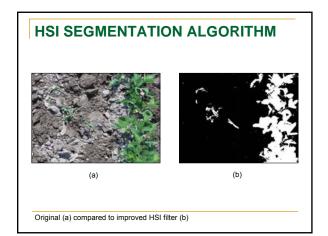


PLANT SEGMENTATION

 A HSI Band-Pass Plant Detection algorithm (BPPD) was developed to address false-negative and falsepositive plant identification in non-diffuse lighting.

$$H_{ij} = \begin{cases} 60 \cdot \left(\frac{G_{ij} - B_{ij}}{I_{ij} - \min(R_{ij}, G_{ij}, B_{ij})} \right) & \text{if } I_{ij} = R_{ij} \\ 120 + 60 \cdot \left(\frac{B_{ij} - R_{ij}}{I_{ij} - \min(R_{ij}, G_{ij}, B_{ij})} \right) & \text{if } I_{ij} = G_{ij} \end{cases} \\ 240 + 60 \cdot \left(\frac{B_{ij} - R_{ij}}{I_{ij} - \min(R_{ij}, G_{ij}, B_{ij})} \right) & \text{if } I_{ij} = B_{ij} \end{cases} \quad I_{ij} = \max(R_{ij}, G_{ij}, B_{ij}) \end{cases}$$

$$\textit{BPPD}_{ij} = \begin{cases} 1 & \textit{if } H_{ij} > H_{min} \land H_{ij} < H_{max} \land S_{ij} > mean(S) \land I_{ij} > mean(I) \\ & \textit{otherwise} \end{cases}$$



CROP ROW DETECTION

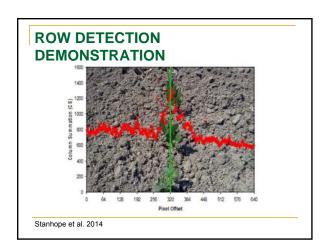
A statistical band-pass filter for estimating lateral crop offset was developed based on work by Slaughter et al. (1996) and Brivot et al. (1997)

$$CS_{i} = \sum_{j=0}^{n_{j}} BPPD_{ij}$$

$$CI_{i} = \begin{cases} i & \text{if } CS_{i} \geq mean(CS) + 2 \cdot std(CS) \\ N/A & \text{if } CS_{i} < mean(CS) + 2 \cdot std(CS) \end{cases}$$

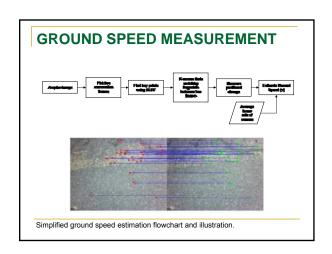
$$\left(median(CI) - \frac{n}{2} & \text{if } count(CI) > 0 \end{cases}$$

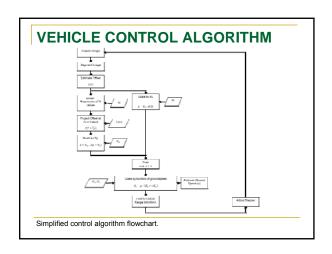
$$Offset = \begin{cases} median(CI) - \frac{n}{2} & if \ count(CI) > 0 \\ i_{max \ (CS)} - \frac{n_l}{2} & if \ count(CI) = 0 \end{cases}$$

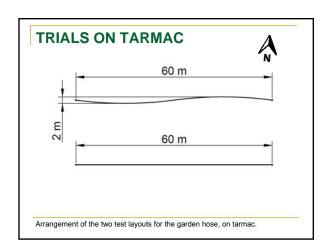


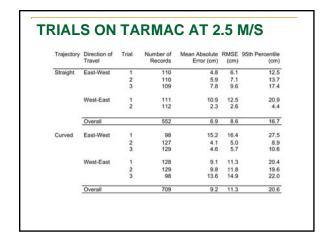
GROUND SPEED MEASUREMENT

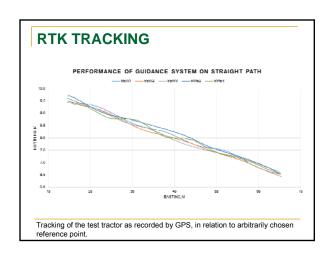
- Using two consecutive frames of the video stream to identify keypoints using SURF algorithm (Bay et al. 2006)
- K-means nearest neighbor matching finds matching keypoints
- Average velocity calculated by determining positional change multiplied by average frame rate of camera (Stanhope, 2015)

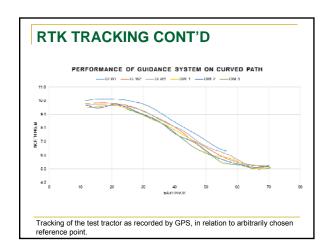












WORK IN PROGRESS

- Higher operating speeds (5 m/s)
- Kalman Filter
- Operator Assisted Reinforcement Learning
 - \rightarrow Q-Learning

Authors next to test tractor.

Q-LEARNING

- Model-free reinforcement learning technique
- The algorithm can be written:
 - Obtain the current state a.
 - Choose a decision of, and execute it.
 - Obtain the new state $\epsilon_{\rm p, i}$ and the immediate reward ϵ
 - Update the matrix $Q(\mathbf{z},\mathbf{d})$ with the equation:
 - $Q(s_0,d_0) = (1-\alpha) \cdot Q(s_0,d_0) + \alpha \cdot \left(\tau + \gamma \cdot \max_{d_{0+1}} Q(s_{0+1},d_{0+1})\right)$
 - Assign a; = a;
 - While $s_i \neq s_{\rm quince}$ return to 2.

where α and γ are the learning rule and the discount factor, respectively.

ACKNOWLEDGEMENTS

The research was conducted at the Macdonald Campus of McGill University, through funding provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants Program. The authors would like to express their appreciation to farm manager Paul Meldrum for his assistance during development and testing.

REFERENCES

- Brivot, R., and J.A. Marchant. 1996. Segmentation of plants and weeds using infrared images. Proceedings of the Institution of Electrical Engineers, Vision, Image and Signal Processing, 143(2): 118–124.
- 143(2), 110—124. Slaughter, D.C., and D.K. Giles. 1997. Precision band spraying with machine-vision guidance and adjustable yaw nozzles. Transactions of the ASAE 40(1): 29–36. Stanhope, T.P., Adamchuk, V.I. & Roux, J.D., 2014. Computer vision guidance of field cultivation for organic row crop production. 2014 Montreal, Quebec Canada July 13 July 16, 2014.

