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» Introduction and objectives

Optimization of Sampling PEEEU
Designs for Validating > Results
Dlglta| Soil MapS « 3D digital soil mapping of SOC content

(theory and results)

« Comparison of sampling designs
Yakun Zhang (M.Sc.)
Supervisor: Prof. Asim Biswas
Department of Natural Resource Sciences

Input data Output soil maps

» Spatial variability of soil properties

Jenny’s theory: S=f (Cl, 0,1t ) (Jenny 1941) G;E::D‘éta Model specifications 3-D predictions
» Traditional soil maps maasuramants

+ Delineation of soil type or properties O MazsDopth inlagraing function(s)
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» Georeferenced soil database
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» Sample size
+ Trade-off between budget and accuracy

» Due to the technical constraints, most studies focus
on top soil. However, the vertical variability, and
» Sample locations horizontal variability of deep soil need more work.
« determined by sampling design
« Sampling design is not the actual pattern of soil
locations, but the procedure used to select it. » Development of proximal soil sensing allows us to
accurately obtain the deep soil properties, which

- . ; T needs more detection and application.
Provide reliable input for predictive model




»Produce 3D digital soil maps to quantify horizontal
and vertical variability of soil properties

»Compare different sampling designs for digital soil
maps in multiple layers (3D)

Field 26 of Macdonald farm
McGill University
Ste-Anne-de-Bellevue
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Soil propert

» SOC content
Laboratory: loss-on-ignition

» Environmental covariates

« Elevation(RTK)

1m-HCP, 1m-PRP, 2m-HCP, 2m-PRP

o

Normslizstion and transformation: y = log(1 =

* Gamma-ray radiation- Total count, K, U, Th, Cs

» Apparent electrical conductivity (DUALEM)-
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3D digital soil mapping of SOC
content by using regression-
kriging

» Regression Kriging (RK)

Prediction =
» 3D- Regression Kriging (RK)
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Trend Prediction Residual Prediction
(Regression) (Kriging)
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» 3D variogram

Exponential model, consisting of three standard parameters (c,,
¢y, 1), and 2 to 3 geometric anisotropy parameters (a,, a, ay)-
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The isotropic lag (h) is calculated by scaling the horizontal and
vertical distances by using anisotropy parameters:
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» Cross-validation results
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» Soil SOC maps
» Sampling variance (standard error)

* 90% Confidence Interval (Lower boundary and upper
boundary)

General Regression Random
linear model tree forest
(GLM) (RT) (RF)

» Depth intervals: 0-5cm, 5-15cm, 15-30cm, 30-60cm,
60-100cm.
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Spatial Distribution Accuracy
coverage of values var+tRMSE
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Comparison of different
sampling designs for
calibrating digital soil maps
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