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A preliminary note/question 
 

Spatial Statistics – or – Geostatistics? 
 

Are they synonyms? 

Is one of these two branches of Statistical Sciences included in 
the other? 

Can they be seen as two branches with a non-empty intersection? 
 

If the third option, it would be justified by the facts that spatial 
correlograms like those based on Moran’s I and Geary’s c 

statistrics (with tests of significance of the ordinates) are not used 
in geostatistics; variograms are used, analyzed and modeled in 
both branches; and the concept of regionalized variable (instead 

of stochastic process) seems to be specific to Geostatistics 
(in simple terms).  

 

The five major points/questions of the day 
 

In Spatial Statistics, 

. A simple random sampling is not recommended! 

. Our eyes are OLS! – What does that mean? Is it ‘good’ to ‘be’ 
OLS, or use an OLS procedure? 

. In general, there is not one mean, but a mean function for the 
random variable of interest. 

. There is autocorrelation in data to be used for correlation 
analysis. – What is the effect? Should we be concerned? 

. There may be correlation at more than one scale; see the 
concept of structural correlations. 

… 

Plant-soil 
example 
used for 
illustration 
(Pelletier et al., 
2009a, b). 
where sampling 
was more 
systematic 
than random. 

 

In Spatial Statistics, a simple random 
sampling is not recommended! 

From 
Dutilleul 

(2011, 
Chapter 9) 



 

Our eyes are OLS! 
 

What does “OLS” mean? 

What is the difference between “OLS” and  “WLS”, “GLS”, 
“EGLS”? 

 
LS = Least Squares 

It is a family of estimation methods in Statistics, based on the 
minimization of the squared distance between the values of a 

variable or a function provided by a certain model and the data 
or statistic values to which that model is fitted. 

The OLS, WLS, GLS, and EGLS procedures essentially differ 
by the metric used to calculate the squared distance between 
the values predicted by the model and the observed values or 

preliminary estimates. 
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Our eyes are OLS! (continued) 
 

OLS: Ordinary Least Squares 
Assumes independence and homoscedasticity of ‘the data’ 
Metric: Euclidean, squared distance between y and y-hat 

 
 

WLS: Weighted Least Squares 
Accounts for heteroscedasticity of ‘the data’ through weights 

Metric: weighted squared distance between y and y-hat 
 
 

GLS: Generalized Least Squares 
EGLS: Estimated Generalized Least Squares 

Aimed to account for heteroscedasticity and autocorrelation in 
‘the data’ 
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From 
Pelletier 

et al. 
(2009b, EEST) 



 

Our eyes are OLS! (last page) 
 

For an example of EGLS estimation procedure with variograms, 
see Pelletier et al. (2004) 

 
Back to the question “Is it ‘good’ to ‘be’ OLS, or use an OLS 

procedure in Spatial Statistics?”, the answer is generally “No” 
because spatial data and derived coefficients (to which a model 

needs to be fitted) tend to be autocorrelated and/or show 
heterogeneity of the variance. 

 
What are the consequences of using an OLS estimation 
procedure when the conditions for its application are not 

satisfied? 
. In estimation, a bias in the estimated variance of the estimator 
. In testing, an inflated Type I error risk if the test statistic and its 
distribution are not modified accordingly 
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In Spatial Statistics, there is not one mean, 
but generally a mean function (alias ‘trend’ or 

‘drift’) for the random variable of interest. 
 

Two main options for drift modeling and estimation: 
. Global, using a trend surface model (e.g., 2nd or 3rd degree 

polynomial in spatial coordinates) 
. Local, using a moving window with optimized size and a 0, 1st 

or 2nd degree polynomial in spatial coordinates inside 
 

What is better? 
 

. The local drift estimation approach, with 1st degree polynomial 
in spatial coordinates inside the window with optimized size 

 

Note: This answer is given on the basis of theoretical and 
simulation results; see Pelletier et al. (2009a), Phase 1 of the 

CRAD method. 

From 
Pelletier 

et al. 
(2009a, EEST) 

 

There is autocorrelation in spatial data to be 
used for correlation analysis. So what? 

 

With the exception of a few very particular cases, the presence 
of autocorrelation in spatial data is always a problem for 

correlation analysis and the outcome of the test of significance. 
 

What is the problem? 
 

Spatial autocorrelation introduces a bias in the variance of the 
correlation estimator (e.g., Pearson’s r statistic), leading to 

rejection of the null hypothesis of absence of correlation more 
often than excepted at a given significance level. 

 

A recommended solution: A modified t-test with 
a number of degrees of freedom (M – 2, instead 
of N – 2) adjusted for spatial autocorrelation 
Reference: Dutilleul (1993) 
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There is autocorrelation in spatial data to be 
used for correlation analysis. So what? (bis) 

 
For partial correlations, see Alpargu and Dutilleul (2006). 
 
For the multiple-correlation case, see Dutilleul et al. (2008). 
 
For the case of structural correlations (see the next and last 
major point/question of the day), the reference is Dutilleul and 
Pelletier (2011). 
 
And there is more work in progress and recent results are 
submitted for publication. 
 
Note: Computer programs (Matlab and non-Matlab versions) 
are available; feel free to visit http://environmetricslab.mcgill.ca.  



 

There may be correlation at more than one 
scale in spatial data; see the concept of 

structural correlations 
 

Let Z1(x, y) = Z11(x, y) + Z12(x, y), Z2(x, y) = Z21(x, y) + Z22(x, y) 
be two 2-D spatial processes with a random non-spatial 
component and a random spatially autocorrelated component, 
 

such that  Cov(Z11(x, y), Z12(x, y)) = 0.0, 
  Cov(Z21(x, y), Z22(x, y)) = 0.0, 
  Cov(Z11(x, y), Z21(x, y)) = −0.5, 
  Cov(Z12(x, y), Z22(x, y)) = +0.5, 
 

so that Cov(Z1(x, y), Z2(x, y)) = 0.0! 
 

How to have a chance to find the non-spatial and spatial 
correlations of −0.5 and +0.5? Answer: Through the analysis of 
cross-variograms and the EGLS fitting of a linear model of 
coregionalization to experimental variograms. 

From 
Pelletier 

et al. 
(2009b, EEST) 

Note: The estimated value of a structural correlation is calculated 
following the formula of Pearson’s r, by using the nugget effects 
estimated from the direct and cross variograms for the non-spatial 
correlation and by using the partial sills of the same direct and 
cross variograms for the spatial correlation. 

 

Closing Remark 
 

In the Statistical Sciences, which include Spatial Statistics, many 
(good) things can be discussed simply in terms of means, 
variances, covariances and correlations. The particle “auto” in 
“autocorrrelation” and “autocovariance” is specific to Temporal and 
Spatial Statistics, where Heterogeneity can be the source of 
‘obstacles’ before the data analyst can reach The Truth… 
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