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Abstract 
 
This paper describes the methodology for the establishment of a Danish soil Near InfraRed 
Spectroscopy (NIRS) library. In order to make an efficient application of NIRS in the field for soil 
property mapping, it is necessary to establish a NIRS library for global calibration. 
Representative 3,534 samples from a 7 km grid sampling were chosen to cover variability in the 
geographical area of Denmark. Partial least square regression was used to build a regression 
model between SOC and the spectra. The data set was divided into three subsets: calibration, 
validation and prediction. Outliers were removed from spectral and reference data. The 
calibration result for non-organic soils was R2=0.81, RMSE=0.22, while validation was R2=0.81, 
RMSE=0.22 and RPD=2.3. This indicates good prediction abilities. The results were also tested 
on independent datasets, with the following results: R2=0.82, RMSEP=0.21 and RPD 2.4. 
Likewise, the calibration result for organic soils was R2=0.82, RMSE=13.70 while validation was 
R2=0.81, RMSE=13.5 with RPD=2.4. Prediction of the independent data set was also 
satisfactory with the R2=0.86, RMSEP=13.80 and RPD= 2.7. 
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Introduction 
 
Visible and near-infrared reflectance (VIS-NIR) spectroscopy has developed into a physical non-
destructive, rapid and highly reproducible method providing inexpensive prediction of soil 
physical, chemical and biological properties (Reeves et al., 1999; Rossel et al., 2006). It is 
relatively easy to use and requires only small quantities of samples for traditional laboratory 
analysis. Therefore, it provides a powerful tool for proximal soil sensing, digital soil mapping, soil 
monitoring and process modelling. Soil organic carbon (SOC) is an important factor of soil 
fertility and plays a critical role in the global carbon cycle (Christopher & Raupach, 2004). The 
objective of this paper was to develop spectral models to predict SOC content from Danish 
soils.  
 
Materials and methods 
 
Soil library 
The Danish soil library consists of 70,000 samples. The soils are diverse and classified as 
Alisols, Anthrosols, Arenosols, Cambisols, Fluvisols, Gleysols, Histosols, Leptosols, Luvisols, 
Phaeozem, Podzols, and Regosols (FAO 1998).The great majority represent sandy soil with low 
SOC content, however highly organic peat soils are also present.  
 
Within this soil library, 3,330 agriculture soils from 752 profiles collected on a nation-wide 7 km 
grid were chosen to cover all the variations of Danish soil types. These profiles originated from 
the field survey in the period from 1986 to 1990. The selected samples consist of 3,288 mineral 
soils and 42 organic soils. Due to a weak representation of soils high in SOC content, we 
supplemented with additional 204 organic samples (SOC≥6%) from the Kyoto wetland survey 
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project, which were collected in 2009 and 2010. Typically, upland fields in Denmark incorporate 
small patches with elevated SOC content, while wetland fields patches with relatively low SOC. 
In order to avoid a highly skewed distribution of the data (Stenberg et al., 2010), subdivision of 
the soil into non-organic (0-12%) and organic (6-55%) was decided for upland and lowland 
mapping, respectively (Table 1). 
 
Table 1 Minimum, maximum, mean and standard deviation (SD) of SOC in the two sets 
 N Min Max Mean SD 
Non-organic 3,330 0 11.2 0.8 1.2 
Organic 204 6 55.2 24.5 13.6 
 
Sample preparation and laboratory analysis 
The samples were air dried and sieved to 2 mm. Reference organic carbon content was 
measured by combustion using a LECO CN-2000 instrument (LECO Corp., St. Joseph, 
Michigan). 
 
Spectra acquisition 
Reflectance spectra were collected with the LabSpec5100 instrument (ASD Inc, Boulder, 
Colorado, USA) covering the visible and near-infrared range between 350 nm and 2,500 nm. 
Soil samples were homogenized before scanning. They were scanned by using a high intensity 
mug-light. White reference was taken every five measurements. Two replicates of each sample 
were taken and averaged automatically by IndioPro 6.0 software (ASD Inc, Boulder, Colorado, 
USA).  
 
Processing methods 
The Unscrambler 10.1 (CAMO, Oslo, Norway) was used for the spectroscopy analysis. Different 
spectra pre-treatments were tested, including Savitzky-Golay derivatives, Multiplicative Scatter 
Correction (MSC), Standard Normal Variate (SNV) and detrending. Principal Component 
Analysis (PCA) was introduced for the identification of outliers. Samples with Mahalanobis 
distance H>3 were considered spectral outliers and removed for further analysis (Shenk and 
Westerhaus, 1991). Partial Least Square Regression (PLSR) was used to build a regression 
model for SOC prediction. The non-organic as well as the organic dataset was divided into 
calibration, validation and prediction subsets. Root Mean Square Error (RMSE) and R2 were 
used as criteria for choosing the best regression model. In addition, the ratio of standard error of 
prediction to standard deviation (RPD) was calculated as RPD=SD/RMSEP, indicating 
predictive abilities of the model. According to Chang and Laird (2002) and their RPD 
classification in soil science, RPD>2 indicates a model with good prediction ability, 1.4<RPD<2 
is an intermediate model yet to be improved, while RPD<1.4 have no prediction ability. For the 
non-organic model, due to skewed distribution of SOC content, SOC values were transferred to 
square root. Wavelengths ranging from 1,000 to 2,500 nm were used as predictors. On the 
other hand, the SOC content of the organic dataset was normally distributed. Therefore, no 
transformation was utilized. Spectra ranging from 400 to 2500 nm were used as predictor for 
building the model. 
 
Results and Discussion 
 
The results of non-organic and organic NIRS models and predictions for the SOC are presented 
in Table 2. Savitzky-Golay’s first derivative with 15 smoothing points appeared to be the best 
pretreatment technique to build non-organic model. Two, five and eight outliers were removed 
from the calibration validation and prediction set of the non-organic dataset, respectively. The 
number of factors used for the calibration was seven. The statistical results from calibration 
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were R2=0.81 and RMSE=0.22, while for validation R2=0.80, RMSE=0.22 and RPD=2.3. The 
results indicated a good correlation between NIRS and SOC content. The prediction on the third 
independent dataset confirmed the robustness of the model, with validation R2=0.82, 
RMSE=0.21 and RPD=2.4 (Figure1a).  
 

Table 2 Performance of non-organic and organic models 
 

 N 
 
Mean Min Max R2 SD RMSE RPD 

Cal 1,108 0.71 0.00 3.35 0.81 0.51 0.22  
Val 1,105 0.71 0.00 3.07 0.80 0.50 0.22 2.3 

Non-
organic�# 

Pre 1,102 0.70 0.00 3.03 0.82 0.50 0.21 2.4 
Cal 131 24.6 6.00 55.20 0.82 13.70 5.77  
Val 43 24.5 6.50 50.00 0.81 13.50 5.73 2.4 

organic 

Pre 22 24.1 6.10 49.00 0.86 13.80 5.12 2.7 
# SOC data have been square root transformed 

 
 
Figure 1. NIRS Calibration, validation and prediction of SOC for non-organic soils 
 
Spectra pretreatment did not improve calibration models for organic dataset. Thus only raw 
spectra were the predictors in the final analysis with nine factors. Within organic data set two 
and six outliers were deleted from calibration and validation subsets. The R2 for calibration and 
validation was 0.82 and 0.81; RMSE was 5.77 and 5.73, respectively, with RPD value 2.4. The 
prediction results from this model show relatively low RMSEP value (5.12) in respect to large 
SOC range and a higher RPD=2.7 (Figure 1b). 
 
Conclusions 
 
The results show that, when dividing the data into non-organic and organic subsets, SOC 
prediction with NIRS works well in comparison with the traditional laboratory analysis. The two 
models developed will further be applied for global prediction in relation to proximal soil sensing 
in Denmark. 
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