
The Second Global Workshop on Proximal Soil Sensing – Montreal 2011 
 

 
 
112 

Using soil spectral libraries in support of proximal soil sensing 
 
Y. Ge1, C.L.S. Morgan2*, J.A. Thomasson1 
1Biological & Agricultural Engineering, Texas A&M University, TX 77843-2117, USA 
2Soil & Crop Sciences, Texas A&M University, TX 77843-2474, USA 
cmorgan@ag.tamu.edu 
 
Abstract 
 
The effectiveness of using the Texas Soil Spectral Library (TSSL) to predict soil sample 
constituents from local Texas fields was investigated in the context of proximal soil sensing. 
Two sample selection methods (Kennard-Stone algorithm and spectral angle mapper method) 
and boosting the calibration model with local samples were also investigated in an attempt to 
improve prediction performance. Results showed that the calibration model from the complete 
TSSL could predict soil organic carbon in local samples satisfactorily, with relative percent 
difference greater than 1.40. The Kennard-Stone algorithm consistently improved the accuracy 
for all local fields, while the spectral angle mapper method and boosting samples had mixed 
results, with prediction greatly improved for some fields but reduced for others. It is concluded 
an existing soil spectral library can be helpful in proximal soil sensing, particularly when the 
application is qualitative or semi-quantitative. 
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Introduction 
 
One of the essential components of a successful optical proximal soil-sensing (PSS) system is a 
reliable and accurate calibration model that relates soil spectral information to various soil 
constituents. The common method of spectral model calibration (as in VisNIR spectroscopy) 
requires samples with known constituents and spectra in advance, a situation neither practical 
nor suitable for use with PSS. Alternatively, an existing spectral library can be used for in-field 
model calibration. However, the concern is that poor performance would result from apparent 
discrepancies between library and field samples in terms of parental material, pedological 
features, clay mineralogy, and other spectral characteristics, not to mention the effect that 
variations in moisture content and aggregate size can have. 
 
“Boosting” a generalized spectral library with local samples has been studied by several 
researchers (Brown, 2007; Sankey et al, 2008). Local samples are usually relatively similar to 
the target samples in many aspects, so including them should improve prediction accuracy by 
making the calibration dataset more representative. On the other hand, some researchers 
(particularly in agricultural products such as grain) have investigated selecting a subset of a 
spectral library for model calibration (Bouveresse and Massart, 1996). The idea in this case is to 
remove extraneous data in the spectral library and thereby improve the representativeness of 
the calibration set. 
 
The overall goal of this study was to investigate the usefulness of a soil spectral library in 
support of PSS and to consider specific methods of use to improve prediction accuracy. Specific 
objectives were (1) to use the Texas Soil Spectral Library (TSSL) to predict soil sample 
constituents from local fields, and (2) to compare methods to improve prediction performance of 
TSSL. 
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Materials and methods 
 
TSSL consists of ~2300 soil samples from various regions of Texas. Six field-scale local 
datasets (50 samples each) from Erath (3 fields), Comanche (2), and McLennan (1) counties 
were equally split for boosting and model validation. All soil samples were scanned with an ASD 
(Boulder, CO) AgriSpec spectrometer from 350 to 2500 nm at a 1-nm interval. Each soil 
spectrum was preprocessed with a custom algorithm (Brown et al., 2005) to obtain the first 
derivative spectrum at 10-nm interval. In this study the focus was given to soil organic carbon 
(OC) measured by subtracting Inorganic C (modified pressure calcimeter) from total C (dry 
combustion). Though the soils in the TSSL and the six local datasets were scans of dried and 
ground samples, this type of exercise could also be performed on samples collected in situ. 
However we have not collected a large enough in situ Texas Spectral Library for this type of 
exercise. 

 
The methods used to improve prediction performance of TSSL involved subsetting the data and 
boosting the data. Subsetting the data was done with two techniques, the Kennard-Stone 
algorithm (K-S, Kennard and Stone, 1969) and the spectral angle mapper (SAM) method. First, 
the K-S algorithm was implemented while retaining 10, 20, …, and 90% of samples in the 
library, and the best retention percentage was identified by cross-validation and tested on the 
local samples. Second, the spectral angle mapper (SAM) method was implemented to select 75 
library samples having the smallest SAM distance to the test samples to form a calibration set. 
Boosting the library with local samples involved including additional local samples in with the K-
S or SAM selected samples for calibration. In total, five calibration models were developed and 
compared: library only, K-S, K-S+Boost, SAM, and SAM+Boost. The RMSE (root mean squared 
error) and RPD (relative performance deviation) statistics were used for model assessment. 
Partial least squares regression was used for model calibration, and data analyses were 
performed in the R computing environment. 
 
Results and discussion 
 
TSSL had greater variation in OC (in terms of both range and CV) but a smaller mean than all 
local fields (table 1). The RPD of the OC models with different K-S retention percentages in the 
calibration set (figure 1) indicates that when the percentage is small (≤ 30%, or 690 samples), 
the performance of TSSL is very poor. Performance improves greatly when the retention 
percentage increases from 40 to 70% and drops when more than 80% of the samples are 
retained. This behavior suggests redundancy exists in TSSL, and the redundant samples 
reduce prediction accuracy. The optimal size of TSSL appears to be 70% of its original size (or 
1600 samples). 
 
Table 1. Summary statistics of soil organic carbon (g kg-1) in Texas Soil Spectral Library and six 

local fields. 
Field N Min. Max. Mean SD CV (%) 
McLennan 50 0.0 27.0 8.5 6.8 80 
Erath1 50 0.3 55.9 14.5 11.2 77 
Erath2 50 0.6 47.7 8.6 9.0 105 
Comanche1 50 0.0 48.2 7.9 9.1 115 
Comanche2 50 0.1 39.7 10.2 8.7 85 
Erath3 50 1.4 49.5 12.6 11.6 93 
TSSL 2298 0.0 88.5 6.4 8.8 139 

Min. = Minimum value; Max. = Maximum value; SD = Standard deviation; CV = Coefficient of 
variation. 
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The RMSE and RPD statistics of the OC calibration models indicate that the five different 
methods behave differently in the different fields (table 2). With only the TSSL data included, all 
fields except for Comanche1 had an RPD greater than 1.4, the threshold suggested by Chang 
et al. (2001) for useful calibration models in soil VisNIR applications. This level of accuracy is 
generally adequate for detecting differences in OC across a landscape. These results therefore 
provide evidence that a soil spectral library can be helpful for supporting PSS applications at the 
landscape and watershed scale.  
 

 
Figure 1. The relative percent difference (RPD) of the soil organic carbon model with different 
retention percents using the Kennard-Stone algorithm.  
 

Table 2. Root mean squared error (g kg-1) and relative percent difference (in parentheses) of 
five soil organic carbon calibration models for six local fields. 

Field Library only K-S K-S+Boost SAM SAM+Boost 
McLennan 3.9 (1.61) 3.9 (1.62) 4.1 (1.55) 4.7 (1.34) 4.3 (1.47) 
Erath1 9.2 (1.44) 8.9 (1.48) 8.8 (1.50) 6.2 (2.11) 6.6 (1.99) 
Erath2 5.0 (1.57) 5.0 (1.57) 4.5 (1.71) 5.0 (1.54) 4.5 (1.71) 
Comanche1 6.9 (1.61) 6.8 (1.63) 6.8 (1.64) 5.9 (1.86) 5.9 (1.87) 
Comanche2 4.7 (1.95) 4.5 (2.04) 4.6 (1.99) 5.4 (1.68) 5.8 (1.57) 
Erath3 5.7 (1.45) 5.4 (1.53) 5.3 (1.55) 5.8 (1.42) 5.0 (1.65) 

K-S = the Kennard-Stone algorithm (70% retention); SAM = Spectral Angle Mapper. 
 
Comparing the other methods to using the entire TSSL, slight but consistent improvements in 
prediction accuracy were seen with the K-S algorithm (70% retention) in all test fields. The SAM 
method improved prediction performance substantially for Erath1 and Comanche1, but RMSE 
increased substantially for Comanche2. It is possible that an analysis of the spectral structure of 
each validation set relative to that of TSSL might shed light on the inconsistency of the SAM 
method. Boosting samples were not very effective when used with the K-S method; only minor 
improvements in a few fields were found. On the other hand, noticeable improvements were 
obtained when boosting samples were used with the SAM method for Erath2 and Erath3 fields. 
When considering all five different methods, SAM+Boost gave the best overall performance for 
local prediction, but the results were not consistent from field to field. 
 
If one is conducting a study with PSS, local boost samples with known constituents may not be 
available. If they are available, they are usually in small quantities compared to the number of 
samples in a spectral library. Therefore, it is advisable to use a spectral selection method to 
select a smaller subset of samples and then incorporate boost samples (as was done with SAM 
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+ Boost). An alternative is to implement weighted regression with more weight on the boost 
samples. It is noteworthy that K-S and SAM are two calibration selection methods based solely 
on soil spectral information. Other methods allow selection of an appropriate calibration set for a 
specific group of target samples (e.g., soil series or Major Land Resource Area). These 
methods have potential in PSS applications but require a more sophisticated library design to 
include such information. 
 
Conclusions 
 
The major conclusions drawn from this study are as follows. 
1. Using TSSL to predict soil OC in local fields yielded satisfactory (RPD > 1.4) results. The 

TSSL would be useful in support of PSS applications that are qualitative a/o semi-
quantitative in nature and at the landscape or watershed scale. 

2. The K-S algorithm maintained or improved prediction accuracy for all validation fields. 
3. Inconsistent results were obtained with the SAM method.  
4. Boosting with local samples resulted in significant improvements in prediction for three fields 

when used with SAM methods. However, boosting efficacy was less apparent when used 
with K-S selection methods.  
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