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Abstract 
 
In the past airborne hyperspectral remote sensing did not generate as accurate results as 
proximal spectroscopy due to some natural surface constraints, as vegetation, moisture, 
roughness, etc. In particular, the unknown moisture content at the moment of airborne data 
collection causes a decrease of accuracy of the SOC prediction model. This study aims to 
quantify the effect of soil moisture on the accuracy of SOC measurements, and to propose a 
method to determine SOC content for moist samples with unknown moisture content. Soil 
samples were collected along a transect, located in the Grand-Duchy of Luxembourg. The 
normalized soil moisture index (NSMI) was used to estimate soil moisture and to spectrally 
classify soil samples. SOC was predicted combining soil spectra and multiple regression models 
from dry up to 25% moisture content. The SOC content prediction of NSMI classified datasets 
did not show a decrease of accuracy compared to the models with a-priori knowledge of soil 
moisture. 
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Introduction 
 
Soil organic carbon (SOC) has been accurately measured by means of visible near-infrared 
spectroscopy (VNIRS) under laboratory controlled conditions (Xie et al., 2011). Field 
spectroscopy showed as well to be an efficient tool to infer SOC content (Stevens et al., 2008; 
Morgan et al., 2009). Airborne hyperspectral remote sensing did not generate as accurate 
results as proximal spectroscopy due to some natural surface constraints, as vegetation, 
moisture, roughness, etc (Selige et al, 2006). In particular, soil moisture drastically alters the soil 
albedo and, thus, the mineral and organic matter spectral signatures. Previous studies 
described two important effects: (i) the interaction between light and soil increases the 
probability of absorption by soil due to the higher relative index of refraction between air and soil 
than that between water and soil (Twomey et al, 1986); (ii) the non-linear decrease of spectral 
reflectance with increasing moisture content, independent of soil types (Whiting et al., 2004). 
Spectral prediction of moisture content, mostly conducted under laboratory controlled 
conditions, gave promising results (Weidong et al., 2003). However, a general method for soil 
moisture assessment under field conditions and for different soil types has not been developed. 
This study aims to: (i) quantify the effect of soil moisture content on the accuracy of SOC 
measurements, and (ii) propose a method to determine SOC content for moist samples with 
unknown moisture content. 
 
Methodology 
 
The study area consisted of a transect (~60 km long and ~7 km wide) crossing north-southward 
the Grand-Duchy of Luxembourg. In June 2010, 107 topsoil samples (0 - 5 cm) were collected. 
Soil samples were taken to the laboratory, air-dried, and sieved. Soil sub-samples were oven-
dried at 105 0C during 24 h, to calculate the moisture content. Soil organic carbon was analysed 
by dry-combustion with a VARIOMAX C/N analyser (Elementar Analysis, Germany). Soil 
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samples were put in Petri dishes, and artificially wetted from 5 to 25% moisture content. 
Afterwards, soil spectral reflectance was collected in the laboratory with a contact probe device 
connected to an ASD Fieldspec-Pro radiometer (ASD, Boulder, Co), 1 nm steps in the 350-2500 
nm wavelength range. Several pre-processing techniques, commonly used in soil spectroscopy, 
were applied for the enhancement of spectral features:  transformation of reflectance (R) 
spectra in absorbance (log (1/R)), to reduce possible spectra non-linearity’s; random noise 
reduction and signal to noise ratio (SNR) improvement using the Savitzky-Golay filter (Savitzky 
and Golay, 1964); spectral resolution enhancement and background effect elimination with first 
derivative and mean-centre function (Viscarra-Rossel et al., 2006). Based on main soil texture 
and SOC content, the datasets were divided in calibration (2/3) and validation set (1/3). Soil 
moisture was estimated developing a linear model between GSM and NSMI (Haubrock et al., 
2008). Partial least square regression (PLSR) (Wold et al., 2001) was chosen as multivariate 
method to develop the SOC prediction models, for all moisture classes. 
 
Results and discussion 
 
The global SOC range was between 9.05 and 50.22 g C kg-1, and presented differences among 
soil types. As observed by Liu et al. (2002), spectral reflectance decreased with increasing 
moisture for all soils types (figure 1a). The visual estimation of figure 1a pointed out that, as the 
overall reflectance declined with increasing moisture, the slope of the curves between 1800 and 
2500 nm tended to increase, and the maximum reflectance shifted toward shorter wavelengths, 
around 1700 nm (Whiting et al., 2004). 

  
Figure 1: a) mean spectral reflectance by moisture content; b) Principal component analyses of 
raw spectra by soil type as a function of soil moisture. 
 
The two first components of the principal component analysis (PCA) of raw spectra explained 
more than 90% of the variability. As observed by Mouazen et al. (2006), the spectral properties 
of samples with a moisture content between dry and 10% MC could be clearly grouped, while 
from 15% to 25% moisture content the PC1 and PC2 scores were mixed and not differentiable 
(figure 1b). Prior to starting calibration and validation procedures to infer SOC content, samples 
from 15% to 25% moisture content were grouped together (>=15 in table 1), as the effect of 
water on spectral reflectance was considered negligible beyond 15% moisture content. PLSR 
models for the prediction of SOC content were developed for all levels of moisture content. 
Moreover, calibration models developed with dry samples were tested on validation sets of wet 
soil spectra (table 1), in order to estimate the effects of soil moisture when “dry” calibration was 
applied to wet spectra (problem of the unknown moisture content of the soil surface during 
airborne remote sensing campaigns). All the calibrations models developed for different level of 
soil moisture content (dry, 5, 10, >=15) gave a RMSE not larger than 5 g C kg-1 and an RPD not 
lower than 2 (table 1), comparable with those obtained under laboratory conditions by Kooistra 
et al. (2003) and Viscarra-Rossel et al. (2006). 

a b 
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Table 1: PLSR model results after validation for different MC% levels (dry, 5, 10,>=15) for dry 

calibration applied to wet soils (dry-5, dry-10, dry->=15) and predicted MC by NMSI (dry- NSMI, 
5-NSMI, 10-NSMI, >=15-NSMI) 

Moisture content (%) RMSEP (g C kg-1) R2 RPD 
Measured moisture class    

dry 4.72 0.78 2.06 
5 4.48 0.79 2.07 
10 3.45 0.87 2.6 

>=15 4.21 0.8 2.00 
Measured dry calibration applied to wet samples    

dry-5 12.17 0.63 0.68 
dry-10 20.27 0.56 0.4 

dry->=15 30.21 0.25 0.26 
Moisture content predicted by NSMI    

dry.NSMI 4.40 0.80 2.16 
5.NSMI 4.45 0.81 2.25 

10.NSMI 4.27 0.83 2.37 
>=15.NSMI 3.58 0.86 2.42 

  
Low quality predictions were obtained when dry calibrations were tested on wet validation sets 
(dry-5, dry-10, dry->=15). The three validation models gave an increasing error when applied 
to validation sets with higher moisture contents. The NSMI predicted soil moisture with a R2 
after validation of 0.74, at 95% of significance (figure 2). 
  

 
Figure 2: Predicted vs. observed values of gravimetric moisture content based on NSMI method 
(dashed line= 1:1 identity line; bold line = line of best fit; shaded areas: confidence intervals at 
the 95% confidence level) 
 
The results were comparable with the soil moisture predictions present in literature. Mouazen et 
al. (2005) had a R2 of 0.75 from predicting soil surface water ranging from 0.5 to 26% moisture 
content. The NSMI showed good prediction ability especially considering the variety of soil types 
in Luxembourg. The linear model based on NSMI generated the predictions which were used to 
build a new moisture content classification, whose results were tested to predict SOC. The 
comparison between the models based on the NSMI classification (dry- NSMI, 5-NSMI, >=15-
NSMI) and the correspondent model develop with known moisture content (dry, 5, 10,>=15) 
(table 1) pointed out that the soil moisture classification based on NSMI was reliable and the 
SOC content models produced after applying the classification gave a mean lower error than 
the models developed with a-priori knowledge of soil moisture. In literature there are many 
examples of accurate methods developed to predict soil moisture from VNIR spectroscopy 
(Lobell et Asner, 2002; Whiting et al., 2004; Mouazen et al., 2006). The advantages of the NSMI 
to classify soil samples based on soil moisture comes directly from the possibility to predict 
moisture content  from spectral data, without calculating water content in the laboratory. 
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Conclusions 
 
Soil moisture dramatically alters the soil spectral reflectance detect by remote sensor. The effect 
has been widely described in literature and the findings of this study confirmed the trend. The 
analyses of spectral data indicated that i) soil moisture drastically alters spectral reflectance until 
15% of humidity, and ii) the reflectance decreases faster with increasing wavelength. The PLSR 
built using dry soils could not be used to predict SOC of moist soils. The NSMI showed to be an 
accurate and spectroscopy based tool to develop a soil moisture classification of the soil 
samples. SOC content prediction realized after NSMI classification generated accurate 
predictions for all soil moisture levels. The methodology proposed in this research might find 
application for the prediction of SOC content based on airborne remote sensing data. Although 
moisture content would be unknown at the moment of data collection, the NSMI might be helpful 
due to (i) the small number of field samples necessary to validate the prediction models 
(compared to the amount of data collected during a flight campaign), and (ii) the simple 
application of a band ratio, sensitive to soil types variation (see table 1), and spectrally 
independent from SOC absorption bands. 
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