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Abstract 
 
In this presentation we introduce two new methods of similarity search and evaluate the 
performance of commonly used distance metrics compared to our approaches. The first method 
uses a surface difference spectrum (SDS) and works in the spectral space. The second one 
works in a projected space and is based on the SDS–locally linear embedding algorithm. We 
also propose a parameter optimization for a principle components distance. To test our 
approaches we used an Australian soil vis–NIR spectral library. The performance of the 
methods was evaluated by their ability to identify spectrums with similar clay content.  
 
Keywords: Manifold learning, distance metric learning, dimensionality reduction, spectral 
similarity, soil spectroscopy. 
 
Introduction 
 
In vis–NIR spectroscopy based proximal soil sensing (PSS) distance metrics and similarity 
search play key roles in assessing unknown soil samples, composition elucidation, finding 
proper calibration sets, and outlier detection. Choosing an appropriate distance metric is an 
important step for the success of many applications of PSS. Much of the soil vis–NIR research 
efforts have been focused in improving soil predictions. Despite this, few studies have been 
carried out to establish adequate distance metric algorithms for similarity search in soil vis–NIR 
data sets. In this work, we introduce two new distance metric approaches for similarity search in 
vis–NIR data. The first one, called spectral difference surface (SDS), is based on a multi-
resolution analysis in the spectral space of differences between samples. The second one is 
built on manifold–based distance metric learning, which learns the SDS distance by using the 
locally linear embedding (σLLE) algorithm. Distance metric learning and manifold learning are 
recent and fast growing research areas in data mining (Weinberger et al., 2010; Qiao et al, 
2011). In distance metric learning the underlying metric is itself adapted to improve the results of 
classification and pattern recognition (Weinberger et al., 2010). Several works in machine 
learning have demonstrated that distance metrics learning leads to substantial improvements 
over the commonly used metrics (Mordohai and Medioni, 2010). Regarding the principle 
components distance method, we will show empirically that the amount of the total variance 
explained by PC features is not a good indicator of the optimal number of PC features to retain 
in the case of soil vis–NIR data. In this respect we also propose a simple framework to identify 
the adequate number of PC features to retain based on a optimization method. 
 
Algorithms 
 
Surface Difference Spectrum – SDS: 
The SDS method involves a multi-resolution analysis of the Euclidean distance spectra (E) 
between two soil spectrums X and Y. An auto–distance function (A) is applied on E as a 
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function of frequency or wavelength delay (σ) returning a 3D spectrum of differences. In SDS 
the only parameter that needs to be set is σ. Outputs of A may be interpreted as multiple 
derivative energy spectrums of the spectral difference between X and Y.  
SDS–Locally Linear Embedding – σLLE: The standard LLE was introduced first by Roweis and 
Saul (2000). Basically LLE is an unsupervised metric learning algorithm, which learns the global 
manifold structure from local neighborhoods. Unsupervised metric learning is usually referred as 
manifold learning (ML). The ML concept was introduced simultaneously by Seung and Lee 
(2000), Roweis and Saul (2000) and Tenenbaum et al. (2000). In ML is assumed that high–
dimensional data lie on or close to a low–dimensional smooth manifold (Qiao et al., 2010). The 
main goal of ML algorithms is to discover geometric structures of high dimensional manifolds 
finding low dimensional and less complex representations of them. In this respect, LLE works as 
a non–linear dimensionality reduction (or projection) method and it is carried out in three main 
steps : 1. Selecting neighbors: In this step the Euclidean distance is used to find the k–nearest 
neighbors Xj of each data point Xi; 2. Computing a weight matrix: Here a weight matrix (W) is 
computed in order to find the optimal reconstruction of Xi by its neighbors (Xj); 3. Computing 
low–dimensional coordinates. In LLE there is only one free parameter that needs to be set: the 
number of neighbors (k). Here we have used the SDS distance for neighbor search instead the 
conventional Eucidean distance (ED) used in the LLE algorithm. Here, our version the standard 
LLE is called σLLE method.  
 
Material and methods 
 
We used an Australian soil spectral library (SSL) which includes 1115 samples. The soils were 
diverse and represented by various Australian Soil Classification orders. We randomly selected 
278 samples from the SSL as unknown set (Xu). The remaining samples (837) were used as 
reference set (Xr). Distances between samples were computed by our proposed approaches: 
the SDS and the σLLE. We compared these to the commonly used methods in PSS: Euclidean 
Distance (ED), Mahalanobis Distance (MD) and PC distance. In the ED and MD methods, 
distances are calculated directly in the spectral space. In the PC method, distances are 
computed on the projected PC scores space. In this projected space the Mahalanobis distance 
is used. In the PC distance method the choosing of PC features to retain is based on the 
explained variance of components. We also proposed and used an optimized PC distance (o–
PC distance) method. The o–PC distance is based on a very simple parameter optimization 
framework to determining the number of PC features to retain before the distance computations.  
For samples in Xu, we searched their most similar samples in Xr. We compared the clay content 
of the Xu samples and the clay content of the most similar samples found. We have used this 
soil attribute because it has a strong effect on the vis–NIR reflectance intensity (Demattê et al., 
2004). The root mean square of differences (RMSD) of cross validations was used as 
parameter to evaluate the performance of the methods tested. To find the optimal parameters of 
SDS (number of wavelengths delays, σ), o–PC (number of PC features, PCs) and σLLE 
(number of nearest neighbors, k) we propose a framework based on the minimization of the 
RMSD. Let h be the parameter to optimize in each method (either σ, PCs or k). A successive 
number of h is used to search for the most similar samples in the reference set. So that, for 
each sample in the reference set its correspondent similar sample in the same set is found as 
function of h. In this way we can find the optimum h that minimizes the RMSD.  
 
Results and discussion 
 
Using the SDS method we found that the distance metric for similarity searching can be 
improved gradually by increasing the number of wavelengths delays (σ) involved in the distance 
computation. Figure 1a shows that around 12 frequency delays (σ=12) were necessary to 
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reduce the RMSD of searching samples with similar clay content. This shows that new 
important information about the spectral similarity between samples is emerging when the 
context in neighborhood wavelengths is taken into account. We selected 12 as optimum σ to run 
the distance computations of for similarity searching. For the o–PC method we found that 8 was 
the optimum number of features to compute the distance matrix. By using the σLLE algorithm 
we observed that the RMSD can be reduced gradually by increasing the SDS–neighbors 
(Figure 1c). We used 35 as optimum number of k. 
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Figure 1. Root mean square of differences (RMSD) of the different methods which required 
parameter optimization. a. SDS distance; b. o–PC distance and c. σLLE distance 
 
Once the parameters of the SDS, o–PC and σLLE methods were optimized we searched for the 
most similar samples of unknown samples (Xu) in the reference set (Xr). Results are 
presentenced in Table 2. 
 

Table 2. Results of the most similar sample search. 
Method Param. value R2 RMSD 

 Searching in the spectral space
ED - 0.65 11.49 
MD - 0.24 21.29 
SDS 10 0.74 9.71 
 Searching in a projected space 
PC 3 0.64 11.67 
o–PC  8 0.75 9.73 
σLLE  35 0.76 9.57 

 
The soil similarity search approach that returned the best results was σLLE (RMSD = 10.83%). 
For searching methods in the original spectral space the best results were obtained by the SDS 
method. On the other hand, the SDS method returned also better results than those obtained 
with the standard PC method and similar to those returned by the o–PC method. In the 
projected space we found that the standard PC distance method can be improved by using our 
proposed parameter optimization. The RMSD of the o–PC search was lower than the RMSD 
obtained with the standard PC method. This confirms that important soil information is also 
contained in the first PC features with low explained variance. For the unsupervised distance 
metric learning method (σLLE), we found that it is a reliable method for similarity search.  
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Conclusions 
 
The results show that the SDS returned the best soil compositional search results in the spectral 
space outperforming the ED and MD methods and even the standard PC distance. The SDS 
method returns similar results to the o–PC method. Except the standard PC, the projection 
methods (o–PC and σLLE) have a good similarity search performance. The reason for this is 
that the projected geometric structures are less complex representations of the original spectral 
space. The standard PC approach is not an adequate method since some PC features 
containing important information on soil compositional are ignored. In light of our results, we 
suggest that the o–PC method for distance computations should be preferred over the standard 
PC method. However, the best results of soil compositional similarity search were obtained by 
using the σLLE approach. In general the unsupervised distance metric learning approach 
(σLLE) can learn the SDS distance calculated in the spectral space and return better results 
because the reduction of the original spectral complexity. On the other hand, the SDS distance 
can be used to reduce the complexity of the vis–NIR data by using the LLE algorithm. 
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