Comparison of diachronic ERT and Spectral Analysis of Surface Waves for estimating bedrock depth

G.Coulouma1, P. Lagacherie1, K. Samyn2, and G.Grandjean2

1. INRA, UMR LISAH, Montpellier, France
2. BRGM, RNSC, Orleans, France

Introduction – Material and Methods – Results – Conclusion

Bedrock depth: an important property

- For the plant
- For the water
- For the soil and CZ

How to obtain bedrock depth?

- Difficult to directly measure this variable
- With Soil pits or soil cores
- Punctual information
- High cost over large zones

- Geophysical methods can give bedrock depth
- Classical ERT or EMI methods
 - already used in contrasted areas (Zhou et al., 2000; Beauvais et al., 2007; Saey et al., 2010)
 - But do no work in case of low contrasted situations
- New methodologies
 - Seismic method uncommon in soil science
 - Diachronic ERT not tested for detection of bedrock depth

Spectral Analysis of Surface Waves (SASW)

- New type of multichannel seismic cable designed for soil investigation
- Based on dispersive character of surface waves (phase velocity depends on the frequency)
- A S-waves velocity model is obtained using inversion of the dispersion curves.

Electrical Resistivity Tomography (ERT)

- Apparent resistivity measurement
- Schlumberger array
- Inversion to obtain a model of resistivity f(depth) from RES2DINV (see Locke, 2002)
- Analysis of the model at the place of each borehole
Introduction – Material and Methods – Results – Conclusion

Sites description

1. **1 transect of SASW**
 - On each site
 - 150 m
 - Determination of soil layers and bedrock depth
 - Classical soil analysis

2. **1 transect of Electrical Resistivity Tomography**
 - The same transect in wet and dry conditions

3. **Soil survey**
 - 150 m
 - 4 m deep
 - 11 cores
 - Determination of soil layers and bedrock depth
 - Classical soil analysis

Whole results

Comparisons between sites

Conclusion

- SASW and ERT are sensitive to different properties
 - Structure and hardness of the bedrock
 - Depth of bedrock
 - Presence of shallow groundwater
 - Electrical properties
- The performance of each sensor highly depends on the geopedological conditions
- These sensors have complementary results
- In the future, such sensors have to be coupled according to prior geopedological knowledge

Coulouma et al., submitted to Geoderma