Sensor data fusion for topsoil mapping

Kristin Pikki, Mats Söderström, Bo Stenberg
Swedish University of Agricultural Sciences, Department of Soil and Environment, Precision agriculture and pedometrics.

Aim
Evaluate and compare the ability of different combinations of proximal data to predict topsoil clay content

The sensors – EM38 Mk2
Geonics Ltd., Canada
Dual-depth bulk electrical conductivity (ECa)

The sensors – The Mole
The Soil Company, The Netherlands
Proximal sensor for Gamma (γ) radiation
Radioactivity (Bq kg⁻¹) can be determined for
- Thorium (²³²Th)
- Potassium (⁴⁰K)
- Uranium (²³⁸U)
- Cesium (¹³⁷Cs)
Depth response 0.2-0.3 m

Ancillary data
- Aerial photo
- Elevation from RTK-GPS
- Drainage map

Reference data
- Contents of clay and soil organic matter (SOM) from soil samples
Hypotheses

1) ECa measurements from multiple occasions would perform better than one ECa measurement alone.

2) ECa measurements with multiple measurement depths would perform better than one single-depth ECa measurement.

3) Using the ECa and the γ radiation sensor together would improve predictions compared to using one sensor alone.

4) Introducing information on spatial variation patterns by adding relevant ancillary data would improve the predictions of either sensor.

Methods

- Calculate all types of independent data to a common grid (10×10m²)
- Extract data from soil sampling locations
- Calibrations (70 sample cells)
- Validation (28 remaining sample cells)
- Prediction (all grid cells)

Study design

(calibrations made)

- 2 dependent variables
 (Contents of clay and soil organic matter, SOM)
- 26 sets of independent data
- 2 prediction methods
 (Partial least squares regression, PLS-R, and k-Nearest Neighbour, kNN)

Results only ECa

Results Data Fusion
Results

- **Gamma**
- **All sensors and ancillary**

Summary

If you have an ECa sensor, you could probably improve your predictions of topsoil clay content by:
- increasing the number of measurement depths
- increasing the number of measurement occasions
- add radiance data from aerial photo or gamma radiation data or both
- use kNN instead of PLS-R

If you have a gamma radiation sensor, you could probably predict topsoil clay content rather accurately from one sensor measurement alone.