Tutorial Set 3: Spatial data analysis

Exercise Site20_3-4 Developing a Yield Goal and N fertilizer prescription maps

Learning objective:	Developing a Yield Goal map based on a multi-layer yield history and then obtaining a nitrate prescription map
Techniques:	ArcToolbox – Spatial Analyst – Map Algebra – Raster Calculator & ArcToolbox – Spatial Analyst – Neighborhood – Focal Statistics
Data Source:	Dataset3

Part 1: Layer management

- 1. Open the previously save project.
- 2. Add a subgroup named "Nitrate" under the group "Nutrient Prescription".
- 3. Add a group named "Yield Interpolation" under the group "Layers".

Part 2: Understanding formulas

Yield normalization:

$$y_{relative_{year}} = \frac{Y_{actual_{year}}}{\overline{Y}_{vear}}$$

Temporal statistics of historical yields:

• Average

$$_{avg} y_{relative} = \frac{y_{relative_{year1}} + y_{relative_{year2}} + \dots + y_{relative_{yearN}}}{N}$$

• Standard Deviation

$$StDev \mathcal{Y}_{relative} = \sqrt{\frac{(\mathcal{Y}_{relative_{year1}} - avg \mathcal{Y}_{relative})^2 + \dots + (\mathcal{Y}_{relative_{yearN}} - avg \mathcal{Y}_{relative})^2}{N-1}}$$

• Coefficient of Variation (%)

$$CV = \frac{StDev \mathcal{Y}_{relative}}{avg \mathcal{Y}_{relative}} \cdot 100$$

Yield Goal:

$$YG = 1.1 \cdot_{avg} y_{relative} \cdot \overline{Y_{average_{crop}}}$$

Dart \mathbf{z}_{i} i reating a view i tor corn haced on a 5 treat	wold record
Fait 3 . Creating a field Guai for corn based on a 3-year	vielu recoru

The following layers drag and place under the **Yield Interpolation** group (these are interpolated layers obtained from Lesson 2 Exercise 2):

 Y_{corn06} = 2006 corn yield

 $Y_{sovbean07}$ = 2007 soybean yield

 $Y_{wheat08}$ = 2008 wheat yield

 Y_{corn09} = 2009 corn yield

 $Y_{sovbean10}$ = 2010 soybean yield

1. Get the field average; such as the field average of 2009 corn yield = \overline{Y}_{corn06} .

In the **Contents** view of **ArcCatalog**, right-click on layer *corn06* and select **Properties**. In the **Raster Dataset Properties** dialog window, scroll down to the section **Statistics** > **Corn06** > **Mean**. The average corn yield of 2006 = **9.51**.

Repeat this step to obtain the average yields for *corn09*, *soybean07*, *soybean10*, and *wheat08*.

ie \$208.73467 _1983_UTM_Zone_18N Edit r (1.000000) ree (0.017453292519943295) 000
I208.73467 1983_UTM_Zone_18N Edit r (1.000000) ree (0.017453292519943295) 000
_1983_UTM_Zone_18N Edit # (1.000000) *ee (0.017453292519943295) 000
er (1.00000) ee (0.017453292519943295) 000
ree (0.017453292519943295) 000
000
2.25
96
orth_American_1983
Options
ed columns:1, rows:1, ignored value(s):
35873162746429
0157089233398
5195548619619
1950115053750

Take note of these values for further use: $\overline{Y}_{corn06} = 9.51$; $\overline{Y}_{corn09} = 10.51$; $\overline{Y}_{soybean07} = 4.28$; $\overline{Y}_{soybean10} = 6.29$; $\overline{Y}_{wheat08} = 2.44$

 Go to ArcToolbox > Spatial Analyst Tools > Map Algebra> Raster Calculator to generate a Corn Yield Goal map.

Formula used:

$$YG = 1.1 \cdot \left(\frac{y_{relative_{corn06}} + y_{relative_{soybean07}} + y_{relative_{wheat08}} + y_{relative_{corn09}} + y_{relative_{soybean10}}}{5}\right) \cdot \frac{(\overline{Y}_{corn06} + \overline{Y}_{corn09})}{2}$$

Soil Interpolation\K	~								Conditional	~
Yield Interpolation\CornO6 Yield Interpolation\cornO9		7	8	9	1		!=	&	Con	1
Yield Interpolation\Soybean07	-	4	5	6	*		>=		SetNull	
Yield Interpolation\soybean10 Yield Interpolation\Wheat08	=	1	2	3		<	<=		Math	
dem31h10_C.tif Field20_Ortho_Q09028559_2008_C.tif	~				+			\sim	Abs Exp	~
.1/5*("Yield Interpolation\Corn06"/9.51+"Yie nterpolation\soybean10"/6.29+"Yield Interpo	eld Inter plation\V	polatio Vheat0	n\corn 8"/2.4	109" / 1 14)*(9.	0.51+" 51+10.	Yield I 51)/2	nterpo	lation\:	5oybean07"/4.28+"	'Yield

Map algebra expression =

 $\label{eq:linear} \begin{array}{l} 1.1 \ / \ 5 \ * \ ("Yield Interpolation \ Corn06" \ / 9.51 \ + \ "Yield Interpolation \ Corn09" \ / \ 10.51 \ + \ "Yield \ Interpolation \ Soybean \ 10" \ / \ 6.29 \ + \ "Yield \ Interpolation \ Wheat \ 08" \ / \ 2.44 \) \ \ (9.51 \ + \ 10.51 \) \ / \ 2 \end{array}$

(DO NOT directly copy and paste the equation into to Raster Calculator, errors will occur!!)

Output raster = *YG* Click **OK** to proceed.

3. The result of *YG* map is as shown:

Part 3: Creating a nitrate prescription variability map

1. Understand the formulas used to estimate N (kg/ha) prescription for corn. YG is the yield goal calculated in Part 2 and OM is the field interpolated organic matter (%) map obtained from Lesson 2 – Exercise 1.

 $N = 21.4YG - 2.5YG \cdot OM$

 Go to ArcToolbox > Spatial Analyst Tools > Map Algebra> Raster Calculator. Generate a Nitrate prescription map by entering the following map algebra expression. A new raster Nitrate_1 is added to the Table of Contents.

> Soil Interpolation\pH								Conditional	^
Soil Interpolation\PA		7	8 9	T		!=	8	Con	
Soil Interpolation (OM)			5 6	*			$\overline{\Box}$	Pick SetNull	
Yield Interpolation\Corn06	_		23					Math	
Vield Interpolation (cornu9 Vield Interpolation (Soybean07 Vield Interpolation) soybean10	~			+			~	Abs	~
Yield Internolation)sovhean111 1.4 * "Nutrient Prescription\Nitrate\yg"	-2.5 * "N	Lutrient P	rescription	n\Nitrat	:e\yg" '	* "Soil 1	interpo	lation\OM"	Cars
utput raster									03

In **Layer Properties** dialog window, select **Symbology** and classify as in the following, and then click **OK**.

Here is the resulting nitrogen prescription map based on continuous yield goal estimates and an interpolated organic matter map

Part 4: Converting raster to polygon

1. Use the **Focal Statistics** tool to smooth the layer *Nitrate_1*. Go to ArcToolbox > Spatial Analyst Tools > Neighborhood > Focal Statistics. In the Focal **Statistics** dialog window, set the parameters as follows.

Click **OK**, and the smoothed layer *Nitrate_1_FS1* will be added to the **Table of Contents**.

ArcToolbox 🛛	🔨 Focal Statistics 📃 🗖
Spatial Analyst Tools Image: Spatial Analyst Tools Image: Spatial Analyst Tools	Input rester
🗄 🗞 Density 🖘 🔊 Distance	Nitrate_1
	Output raster
🗉 🗞 Generalization	H.\Class\GIS_Educational\TutorialPackages\Site20\Datasets\Dataset3\Witrate_1_FS1
🗄 🧞 Groundwater	Neighborhood (optional)
⊕ Some Hydrology ⊕ Some Interpolation	Rectangle
🗄 🧞 Local 🕫 🌑 Map Algebra	Neighborhood Settings
⊕ 🗞 Math ਜ 🇞 Multivariate	Height: 5
 Neighborhood Block Statistics 	Width: 5
Filter Focal Flow Focal Statistics Line Statistics	Units: 💿 Cell 🔿 Map
Point Statistics	- Statistics type (optional)
	MEAN
	✓ Ignore NoData in calculations (optional)

Here is the resulting smoothed nitrogen prescription map. Other smoothing options could be attempted as well. This step can be repeated to obtain the best zoning delineation.

2. Reclassify the raster layer *Nitrate_1* to a new raster containing pixels with integer values. Go to ArcToolbox > Spatial Analyst Tools > Reclass > Reclassify. Assign new values to reclassify *Nitrate_1* by clicking Classify... and set the number of classes to 15 and break values to be the same as presented below (intervals of 10 kg/ha). Click OK and save it as *Nitrate_RC*. This process format pixel values from "floating" to "integer".

nput raster			^	
Nitrate_1_FS1		•	1	🗉 🗹 Nitrate_R
leclass field			=	Valua
Value			~	<u> </u>
teclassification				90
Old values	New values			110
38.761944 - 80	80	Classify		120
80-90	90			130
90 - 100	100	Umque		<u> </u>
100 - 110	110		=	1 50
110 - 120	120	Add Enter	-	1 60
120 - 130	130	Aug Entry		170
130 - 140	140	The Lot Table		180
140 - 150	150			190
Load Save	Reverse New Val	lues Precision		210
Output raster			λ	
H:\Class\GIS_Educational\Tuto	rialPackages'Site20\Dataset	s\Dataset3\Witrate_RC	2	
Change missing values to N	oData (optional)			

3. Convert the raster to a polygon.

Go to **ArcTookbox** > **Conversion Tools** > **From Raster** > **Raster to Polygon**. Save output polygon as *Nitrate_shp*. Click **OK** to proceed.

Input raster							
Nitrate_RC						•	6
Field (optional)							
VALUE							~
Output polygon feature	s						· · · · · · · · · · · · · · · · · · ·
H:\Class\GIS_Education	onal\TutorialPa	ckages'Site	20\Datasets\	Dataset3\N	litrate_shp.si	հթ	
Cal Since Life and have a	/1V						
Sumbin holhaburgous	(opnonal)						

Here is the final polygonal nitrogen prescription map

4. Save the project.