Tutorial Set 4: Remote sensing

Exercise Site20_4-4 Digital number to reflectance conversion

Learning objective: Converting a Landset8 OLI image from a digital number to reflectance Techniques: Reclassifying and compositing new rasters using the Reclass and Raster Calculator Data Source: Dataset5

Schema of the process from Landsat7 digital number to reflectance:

Part 1: Reflectance calculation

Step 1: Reclassify DN image.

Reclassify **0 value** to **NoData** using **Reclassify (Spatial Analyst Tools**). Cells with value = 0 in a Landsat image indicates missing data.

- 1. Go to ArcToolbox > Spatial Analyst Tools > Reclass > Reclassify.
- 2. Reclassify *RED.TIF* (Band 4) and *NIR.TIF* (Band5).

~	Reclassify	- • ×	
Input raster		^	Input image = <i>NIR.TIF</i>
NIR.TIF		- 6	
Reclass field			
Value		~	
Reclassification			
Old values	New values		1
0	NoData	Classify	Click "Unique" and then change
	2	Unique	Old values = 0 to New Values =
3	3		NoData
4	4	Add Entry	NoData
5	5	Add Entry	
6	6	Delete Entries	
/	/ Y		
Load Save	Reverse New Values	Precision	
Output raster			Output image = NIR r.TIF
F:\Class\EducationalData_59	Sites\TutorialPackages_20&24\	Site20\Dat a 🔁 🗸	
ОК	Cancel Environments	Show Help >>	
3. Result:			
		•	
Charles and			
March 1 - Station	Harris		
A contract of the second			
	A. B		
			A Shirt A
	RED.TIF		NIR.TIF
			the the
	High : 5010	00	High : 55765
	Low : 0		Low:0

Before reclassifying. Cells value range 0-50100 After reclassifying. Cells value ranges 1-55765

Step 2: Convert DN image to radiance image (Chander *et al*, 2009)

Formula: $L_{\lambda} = (gain_{\lambda} \times DN7) + bias_{\lambda}$

L_{λ} : Radiance [Watts/(m ^{2*} µm [*] ster)]	Band	Gain	Bias
DN7: Landsat8 digital number data	4 (RED)	0.621654	-5.62
$gain_{\lambda}$ and $bias_{\lambda}$: Band specific number	5 (NIR)	0.639764	-5.74

- 1. Go to ArcToolbox > Spatial Analyst Tools > Map Algebra > Raster Calculator
- 2. Create radiance images for **RED_r.TIF**.
- 3. Repeat the same process for NIR_r.TIF.

2			R	aster	Calo	culat	or			×								
Map Algebra express	sion									~								
 ♦ RED_refc.TIF ♦ NIR_ref.TIF ♦ RED_ref ♦ NIR_ra.TIF ♦ RED_ra.TIF ♦ NIR_r.TIF ♦ RED_r.TIF ♦ RED_r.TIF ♦ ColorMap 	^	7 4 1	8 5 2 0	9 6 3	/ * +	=== > < (!= >= <=)	& ~	Conditional — Con Pick SetNull Math — Abs Exp Exp Exp10	<	1	0.0	-016	Г / *	"DEI		1.5%	
0.621654 *"RED_r.TIF" - 5.62 Output raster RED_ra.TIF OK Cancel Environments Show Help >>												0.6 Ou	tput	54 *	"REI	0_r.1	IF" -	5.62

Step 3: Convert radiance image to reflectance image

1. Formula:
$$R_{\lambda} = \frac{\pi \times L_{\lambda} \times d^2}{E_{su,\lambda} \times \sin(\theta_{SE})}$$

 R_{λ} : Reflectance [unitless ratio] L_{λ} : Radiance [Watts/(m^{2*}µm*ster)] d: earth-sun distance [in astronomical units] $E_{su,\lambda}$: Band-specific radiance emitted by the sun θ_{SE} : Solar elevation angle

- 2. Find values:
 - E_{su,λ}

Band	E _{su,λ} [Wats / (m² *μm)] (Chander et al., 2009)	
1	1997	
2	1812	
3	1533	
4	1039	
5	230.8	
7	84.9	

θ_{SE}

```
Open the file "*_MTL. txt". Find SUN_ELEVATION = 62.47
\theta_{SE} = 62.47 (degree)
Note: in ArcGIS, the value for sin() should be in radians.
So, \theta_{SE} = 62.47 (degree) = 62.47 * \pi/180 (radians) = 0.703978 (radians)
   CLOUD COVER = 3.59
   CLOUD COVER LAND = 3.63
   IMAGE QUALITY OLI = 9
   IMAGE QUALITY TIRS = 9
   TIRS SSM MODEL = "FINAL"
   TIRS SSM POSITION STATUS = "ESTIMATED"
   TIRS STRAY LIGHT CORRECTION SOURCE = "TIRS"
   ROLL ANGLE = -0.001
   SUN AZIMUTH = 141.04300379
   SUN ELEVATION = 62.47242388
   EARTH SUN DISTANCE = 1.0150347
   SATURATION BAND 1 = "Y"
   SATURATION BAND 2 = "Y"
   SATURATION BAND 3 = "Y"
   SATURATION BAND 4 = "Y"
   SATURATION BAND 5 = "Y"
   SATURATION BAND 6 = "Y"
   SATURATION BAND 7 = "Y"
   SATURATION BAND 8 = "N"
   SATURATION BAND 9 = "N"
```

• *d*

To find the earth-sun distance, we should find which day of the year (DOY) the image was taken. This information is recorded in the file "*_MTL.txt". Find DATE_ACQUIRED = 2018-08-06, which means DOY = 159 (the 159th day of the year).

```
SENSOR ID = "OLI TIRS"
WRS PATH = 13
WRS ROW = 28
NADIR OFFNADIR = "NADIR"
TARGET WRS PATH = 13
TARGET WRS ROW = 28
DATE ACQUIRED = 2018-06-08
SCENE CENTER TIME = "15:30:54.5724640Z"
CORNER UL LAT PRODUCT = 47.07019
CORNER UL LON PRODUCT = -72.96593
CORNER UR LAT PRODUCT = 47.13596
CORNER UR LON PRODUCT = -69.82155
CORNER LL LAT PRODUCT = 44.89622
CORNER LL LON PRODUCT = -72.81343
CORNER LR LAT PRODUCT = 44.95721
CORNER LR LON PRODUCT = -69.78987
```

	Earth-Sun distance (d) in astronomical units for Day of the Year (DOY)										
DOY	d	DOY	d	DOY	d	DOY	d	DOY	d	DOY	d
1	0.98331	61	0.99108	121	1.00756	181	1.01665	241	1.00992	301	0.99359
2	0.98330	62	0.99133	122	1.00781	182	1.01667	242	1.00969	302	0.99332
3	0.98330	63	0.99158	123	1.00806	183	1.01668	243	1.00946	303	0.99306
4	0.98330	64	0.99183	124	1.00831	184	1.01670	244	1.00922	304	0.99279
5	0.98330	65	0.99208	125	1.00856	185	1.01670	245	1.00898	305	0.99253
6	0.98332	66	0.99234	126	1.00880	186	1.01670	246	1.00874	306	0.99228
7	0.98333	67	0.99260	127	1.00904	187	1.01670	247	1.00850	307	0.99202
8	0.98335	68	0.99286	128	1.00928	188	1.01669	248	1.00825	308	0.99177
9	0.98338	69	0.99312	129	1.00952	189	1.01668	249	1.00800	309	0.99152
10	0.98341	70	0.99339	130	1.00975	190	1.01666	250	1.00775	310	0.99127
11	0.98345	71	0.99365	131	1.00998	191	1.01664	251	1.00750	311	0.99102
12	0.98349	72	0.99392	132	1.01020	192	1.01661	252	1.00724	312	0.99078
13	0.98354	73	0.99419	133	1.01043	193	1.01658	253	1.00698	313	0.99054
14	0.98359	74	0.99446	134	1.01065	194	1.01655	254	1.00672	314	0.99030
15	0.98365	75	0.99474	135	1.01087	195	1.01650	255	1.00646	315	0.99007
16	0.98371	76	0.99501	136	1.01108	196	1.01646	256	1.00620	316	0.98983
17	0.98378	77	0.99529	137	1.01129	197	1.01641	257	1.00593	317	0.98961
18	0.98385	78	0.99556	138	1.01150	198	1.01635	258	1.00566	318	0.98938
19	0.98393	79	0.99584	139	1.01170	199	1.01629	259	1.00539	319	0.98916
20	0.98401	80	0.99612	140	1.01191	200	1.01623	260	1.00512	320	0.98894
21	0.98410	81	0.99640	141	1.01210	201	1.01616	261	1.00485	321	0.98872
22	0.98419	82	0.99669	142	1.01230	202	1.01609	262	1.00457	322	0.98851
23	0.98428	83	0.99697	143	1.01249	203	1.01601	263	1.00430	323	0.98830
24	0.98439	84	0.99725	144	1.01267	204	1.01592	264	1.00402	324	0.98809
25	0.98449	85	0.99754	145	1.01286	205	1.01584	265	1.00374	325	0.98789
26	0.98460	86	0.99782	146	1.01304	206	1.01575	266	1.00346	326	0.98769
27	0.98472	87	0.99811	147	1.01321	207	1.01565	267	1.00318	327	0.98750
28	0.98484	88	0.99840	148	1.01338	208	<u>1.015</u> d	= 1.01	500 for D	OY = 1	159 ¹¹
29	0.98496	89	0.99868	149	1.01355	209	1.015				2
30	0.98509	90	0.99897	150	1.01371	210	1.01533	210	1.00234	330	0.98694
31	0.98523	91	0.99926	151	1.01387	211	1.01522	271	1.00205	331	0.98676
32	0.98536	92	0.99954	152	1.01403	212	1.01510	/ 272	1.00177	332	0.98658
33	0.98551	93	0.99983	153	1.01418	213	1.01497	273	1.00148	333	0.98641
34	0.98565	94	1.00012	154	1.01433	214	1.01485	2/4	1.00119	334	0.98624
35	0.98580	95	1.00041	155	1.01447	215	1.014/1	275	1.00091	335	0.98608
36	0.98596	96	1.00069	156	1.01461	216	7.01458	276	1.00062	336	0.98592
37	0.98612	97	1.00098	157	1.01475	217	r 1.01444	277	1.00033	337	0.98577
38	0.98628	98	1.00127	158	1.01488	218	1.01429	2/8	1.00005	338	0.98562
39	0.98645	99	1.00155	159	1.01500	219	1.01414	2/9	0.99976	339	0.98547
40	0.98662	100	1.00184	160	1.01513	220	1.01399	280	0.99947	340	0.98533

Earth-Sun distance (d) in astronomical unit DOY is listed below (Chander et al., 2009):

3. Go to ArcToolbox > Spatial Analyst Tools > Map Algebra > Raster Calculator

4. Create reflectance image for *RED_ra.TIF* and *NIR_ra.TIF*.

For RED_ra.TIF:

Equation = (3.141592654 * "RED_ra.TIF" * Square(1.01500)) / (1533 * Sin(62.47 * 3.141592654/180)) Output = *RED_ref.TIF*

For NIR_ra.TIF:

```
Equation = (3.141592654 *"NIR_ra.TIF" *Square(1.01500))/(1039* Sin(62.47
*3.141592654/180))
Output = NIR_ref.TIF
```

Step 4: Correct reflectance image, i.e., reclassify the negative value to 0.

During the previous calculation, some negative values are produced We have to correct them and set them to 0.

- 1. Go to ArcToolbox > Spatial Analyst Tools > Map Algebra > Raster Calculator.
- 2. Create corrected reflectance image for *RED_ref.TIF* and *NIR_ref.TIF*.

Raster Calculator	
Map Algebra expression	^
$ \begin{array}{c} & & RED_refc.TJF \\ & & NIR_ref.TJF \\ & & NIR_ref.TJF \\ & & RED_ref \\ & & NIR_ra.TJF \\ & & RED_ra.TJF \\ & & NIR_ra.TJF \\ & & NIR_r.TJF \\ & & NIR_r.TJF \\ & & NIR_r.TJF \\ & & ColorMap \\ & & & O \\ & & & I \\ \end{array} \begin{array}{c} & & Cond \\ & & Cond$	itional — ^
Con("NIR_ref.TIF"<0,0,"NIR_ref.TIF")	Equation = CON("NIR_ref.TIF"<0,0,"NIR_ref.TIF")
Output raster NIR_refc.TIF OK Cancel Environments	(meaning: if value of NIR_ref.TIF < 0, set value = 0, if not, keep same value)
	Output = NIR_refc.TIF

3. Result of *RED_refc.TIF* and *NIR_refc.TIF*.

