Lesson 4.2: NDVI Calculation

Data Source: dataset5.zip

NDVI is used to quantify vegetation greenness and is useful in understanding vegetation density and assessing changes in plant health.

- 1. Open ArcGIS Pro and add *Dataset5* to your folder connections. Add all the files in *Dataset5* to your map.
- 2. Search **Polygon to Raster.** Convert Field20_boundary into a raster.

Geoprocessing		~	η×
\odot	Polygon to Raster		\oplus
Parameters Environm	nents		?
Input Features			
Field20_Boundary		~	
Value field			
INDEX		~	嶽
Output Raster Dataset			
Boundary_raster			
Cell assignment type			
Cell center			~
Priority field			
NONE		~	嶽
Cellsize			
1.7			
Build raster attribut	te table		

- 3. Search Raster Calculator (Spatial Analysis).
- 4. In the parameters tab, input "RED.TIF" * "Boundary_raster".
- 5. In the environments tab, select **Minimum Inputs** under **Cell Size.** Hit **Run**.

Geoprocessing		~ 4 ×	Geoprocessing 🗸 🗸
Raster Calcu	ator	\oplus	Raster Calculator
Parameters Environments		?	Parameters Environments (
Map Algebra expression Rasters	Tools	T	Output Coordinates Output Coordinate System ①
RED_c Boundary_raster	Operators +	Î	Geographic Transformations
<pre>NIR.TIF RED.TIF RED.TIF"*"Boundary_raster"</pre>	- * /	~	 ✓ Processing Extent Extent I → → → → → → → → → → → → → → → → → → →
Cutput raster		>	 ✓ Raster Analysis Cell Size Minimum of Inputs ✓ Cell Size Projection Method Convert units ✓

- 6. Repeat steps 3-5 for *NIR.TIF*.
- 7. Your resultant maps should look like the two below. Change the colors in **Symbology**.

8. The equation for calculation NDVI is as follows:

$$NDVI = \frac{(NIR - RED)}{(NIR + RED)}$$

- 9. Search Raster Calculator.
- Input the equation, the same as the one above: (Float("NIR_c")- Float("RED_c"))/(Float("NIR_c") + Float("RED_c")) and name your new raster NDVI.
- 11. Save you map.

Geoprocessing		~	ųΧ
€ Raste	Raster Calculator		
Parameters Environments			?
Map Algebra expression			
Rasters		Tools	T
NVDI 📃	^	Float	^
NIR_c		Int	
RED_c		Ln	
Boundary_raster		Log10	
📕 Base_Geo.jpg	~	1002	~
<pre>(Float("NIR_c")- Float + Float("RED_c"))</pre>	("RED_C"))/(Float("NIR_c")	∧ ⊊ √
			\$
Output raster NDVI] 🚘