AETC Conference February 10, 2003 Using Ion-Selective Electrodes to Map Soil Properties

Viacheslav Adamchuk

Biological Systems Engineering University of Nebraska - Lincoln





## **Problem Statement**

- The sensing of soil variability is one of the most important steps in site-specific management
- Varying application rates is inappropriate without accurate soil maps
- Obtaining this descriptive information about a field is expensive using conventional methods
- There is a need to develop equipment for mapping chemical soil attributes on-the-go
- Offered technology must be reliable, rapid, simple, inexpensive, repeatable

























| Electrode Accuracy                                                                                                                                                      |         |         |                  |         |         |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------|---------|---------|------------------|
|                                                                                                                                                                         | Probe 1 | Probe 2 | Probe 3          | Probe 4 | Probe 5 | Probe 6          |
|                                                                                                                                                                         | рН      | рK      | pNO <sub>3</sub> | рН      | рК      | pNO <sub>3</sub> |
|                                                                                                                                                                         | Brand 1 |         |                  | Brand 2 |         |                  |
| Individual R <sup>2</sup>                                                                                                                                               | 0.89    | 0.40    | 0.30             | 0.93    | 0.67    | 0.03             |
| Daily Mean R <sup>2</sup>                                                                                                                                               | 0.96    | 0.61    | 0.60             | 0.97    | 0.83    | 0.08             |
| Mean R <sup>2</sup>                                                                                                                                                     | 0.98    | 0.89    | 0.89             | 0.99    | 0.95    | 0.56             |
| Reference:<br>Average Standard Test for pH<br>Saturation Paste and Atomic Absorption Spectroscopy for pK<br>Saturation Paste and Cadmium Reduction for pNO <sub>3</sub> |         |         |                  |         |         |                  |



























- Eric Lund, Veris Technologies (Salina, KS)
- Achim Dobermann, University of Nebraska-Lincoln (Lincoln, NE)
- Mark Morgan, Purdue University (West Lafayette, IN)
- James Lowenberg-DeBoer, Purdue University (West Lafayette, IN)
- Small Business Innovation Research (SBIR) program of USDA.
- USDA/NASA program on Application of Geospatial and Precision Technologies (AGPT)

