Background

- Assessment of soil variability is essential in site-specific management
- Variable rate application requires accurate information about soil spatial structure
- Obtaining adequate spatial information for a field is expensive using conventional soil sampling and analysis methods
- Accurate mapping of soil attributes requires high density on-the-go sampling
- Recent on-the-go sensors can reveal spatial variation in soils, but improved prescription algorithm are needed

Enhancement of On-the-Go Soil Sensor Data Using Guided Sampling

Viacheslav I. Adamchuk Raphael A. Viscarra Rossel
Biological Systems Engineering CSIRO Land and Water
University of Nebraska - Lincoln Canberra, Australia
David B. Marx Ashok K. Samal
Statistics Computer Science and Engineering
University of Nebraska - Lincoln University of Nebraska - Lincoln

Background

- Assessment of soil variability is essential in site-specific management
- Variable rate application requires accurate information about soil spatial structure
- Obtaining adequate spatial information for a field is expensive using conventional soil sampling and analysis methods
- Accurate mapping of soil attributes requires high density on-the-go sampling
- Recent on-the-go sensors can reveal spatial variation in soils, but improved prescription algorithm are needed

On-the-go Soil Sensors

- Electrical and Electromagnetic
- Optical and Radiometric
- Acoustic
- Mechanical
- Electrochemical

Applicability of On-the-Go Soil Sensors

<table>
<thead>
<tr>
<th>Soil property</th>
<th>Chemical</th>
<th>OK</th>
<th>Good</th>
<th>Some</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil texture (clay, silt, sand)</td>
<td>Good</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil organic matter or total carbon</td>
<td>Some</td>
<td>Good</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil water (moisture)</td>
<td>Good</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil salinity (sodium)</td>
<td>OK</td>
<td></td>
<td></td>
<td>Some</td>
</tr>
<tr>
<td>Soil compaction (bulk density)</td>
<td>OK</td>
<td></td>
<td></td>
<td>Some</td>
</tr>
<tr>
<td>Depth variability (hard pan)</td>
<td>Some</td>
<td>Good</td>
<td>OK</td>
<td>Some</td>
</tr>
<tr>
<td>Soil pH</td>
<td>Some</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual nitrate (total nitrogen)</td>
<td>Some</td>
<td>Some</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Other nutrients (potassium)</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEC (other buffer indicators)</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Guided (Targeted) Sampling

- Prescription rules:
 1) Cover the entire range of data from each source
 2) Avoid field boundaries and other transition zones
 3) Spread samples over the entire field
- Current difficulties:
 1) Poor ability to simultaneously consider multiple data layers
 2) Uncertain number of needed guided samples
 3) Difficult validation and comparison of a sampling scheme with alternatives

Objectives

- Develop a set of criteria that may be used to compare alternative sampling schemes
- Evaluate a number of different sampling schemes
- Two different sensors with relatively low correlation between their outputs have been used to test the proposed methodology
Spatial Separation (S-optimality)

\[S_{opt} = \frac{N(N - 1)}{2 \sum_{i=1}^{N} \sum_{j \neq i+1} \frac{1}{\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}}} \]

- N is the number of guided samples (N = 10)
- x and y are the spatial coordinates for \(i^{th}\) and \(j^{th}\) locations

Data Spread (D-optimality)

\[D_{opt} = |Z'Z| \]

\[Z = \begin{bmatrix} 1 & z_1 \\ 1 & z_2 \\ \vdots & \vdots \\ 1 & z_N \end{bmatrix} \]

- \(z_i\) is the value of pH or EC for \(i^{th}\) measurement
Local Homogeneity (H-criterion)

\[H_{cr} = 1 - \frac{\sum_{i=1}^{N} \sum_{j=1}^{n_i} (z_i - z_j)^2}{\sum_{i=1}^{N} n_i \cdot H_{max}} \]

- \(n_i \) is the number of existing nearest neighbors for \(i \)th location (\(n_i = 2 \) to 4)
- \(H_{max} \) is the maximum value of \(1 - H_{cr} \) for the given dataset, obtained using ten points with the greatest mean squared difference with neighbors

Objective Function

\[OF = \sqrt{S_{opt} \cdot D_{opt-pH} \cdot D_{opt-EC} \cdot H_{cr-pH} \cdot H_{cr-EC}} \]

- S-optimality
- D-optimality (soil pH)
- D-optimality (soil EC)
- H-criteria (soil pH)
- H-criteria (soil EC)

Scaling

1) Dividing individual values by the median of corresponding criterion estimate for 10,000 random selections
2) Scaling (0 to 1) with respect to the range of corresponding criterion estimates for 10,000 random selections
3) Scaling (0 to 1) of the rank obtained for all selections considered (including 10,000 random and 100 prescribed selections)

Evaluated Strategies

1. Ten completely random locations
2. Ten random locations within 25% of total possibilities with the lowest local variability in soil pH
3. Ten locations randomly selected from ten equal intervals of soil pH
4. Ten random locations within 25% of total possibilities with the lowest local variability in soil EC
5. Ten locations randomly selected from ten equal intervals of soil EC
6. Ten locations randomly selected from ten rectangular grids
7. Ten locations randomly selected according to categorical separation procedure (three categorized levels of soil pH and EC)
8. Ten locations randomly selected according to categorical separation procedure with local homogeneity constraints
9. Ten locations randomly selected according to a Latin hypercube sampling (LHS) procedure
10. Ten locations randomly selected according to a Latin hypercube sampling (LHS) procedure with S-optimality and H-criteria constraints

Measurement Distributions

- Soil pH
- Soil EC, mS/m

Measurement Categorization

- Soil pH
- Soil EC
Prescribed Sampling

Categorical data separation
Latin Hypercube Sampling (LHS)

Constrained Sample Validity

Number of measurements

Allowed
Not-allowed

Five Basic Criteria

Sopt
Dopt (pH)
Dopt (EC)
Hcr (pH)
Hcr (EC)

Scaled Criteria and OF

Sopt
Dopt (pH)
Dopt (EC)
Hcr (pH)
Hcr (EC)
OF

By Median
By Range
Ranking

Range of Scaled OF Values

By Median
LHS with constraints

By Range
Categorization with constraints

Ranking

Scaled Criteria and OF

By Median
By Range
Ranking
Summary

- An objective function accounts for representing the entire range of sensor data (Dopt), spreading around the field (Sopt) and local homogeneity (Hcr)
- Constrained categorical separation and Latin hypercube sampling were used to simultaneously address all established criteria
- Normalization by median for a large number of random sets appeared to be the most robust method from those considered to precondition estimates of each criterion prior to obtaining their geometrical mean (objective function)
- As long as the formulation of established criteria remains unchanged, this method prevents the subjectivity in setting the weights for individual criteria
- Further optimization of the number of guided sampling locations and the selection process in general is needed

http://bse.unl.edu/adamchuk
E:mail: vadamchuk2@.unl.edu