

10th International Precision Agriculture Conference Denver, Colorado July 19, 2010

Precision Agriculture Education Program in Nebraska

Viacheslav I. Adamchuk

Richard B. Ferguson

Biological Systems Engineering Agronomy and Horticulture University of Nebraska - Lincoln

Bioresource Engineering McGill University

Course Description

- **Title: Site-Specific Crop Management**
- Offering: Fall semester 3 credit hours (2 hrs lecture and 3 hrs lab) elective
- <u>Prerequisites</u>: Senior standing with previous introduction to soils and/or general agriculture
- Cross listing: Agronomy, Mechanized Systems Management and Agricultural Engineering majors
- Instruction: Co-taught between Biological Systems
 Engineering and Agronomy and Horticulture Departments
 with several guest speakers
- Description: Principles and concepts of site-specific management. Evaluation of geographic information systems for crop production practices. Practical experience with hardware and software necessary for successful application of information affecting crop management.

Course Objectives

- Use global navigation satellite systems (GNSS) receivers and understand the meaning of geo-referenced data.
 Use geographic information systems (GIS) software to accomplish primary spatial data management tasks. 1.
- Work with yield monitoring and other relevant data acquisition equipment.
- Identify major sources of errors and develop proper data-handling
- Determine the potential usage of remote sensing and automated on-the-go mapping systems.
- Understand the principles of variable rate application of seeds, water, fertilizers, lime, and other chemicals. 6.
- Integrate yield and soil fertility maps with other geo-referenced data to develop an effective site-specific crop management program. Apply a systems approach and common sense to deduct causes of spatial variability and develop corresponding recommendations.
- 8.
- Identify potential advantages (both economic and environmental) and current limitations of precision agriculture.

General Topics

- History and present level of Precision Agriculture
- Principles of yield mapping
- Principles of Global Positioning System (GPS)
- GPS vehicle guidance
- Principles of Geographic Information Systems (GIS)
- Web-based data layers
- Methods for soil sampling and analysis
- On-the-go soil & plant sensors
- Site-specific nutrients and water management
- Introduction to remote sensing
- Interpolation and processing of georeferenced data
- Statistical/geostatistical tools
- System approach to improved management strategies
- Variable rate technology

Hand-on Experience

- Field trips
 - GNSS field practice
 - Yield mapping practice
 - Soil pH/EC mapping and sampling practice
 - Husker Harvest Day visit
- Laboratory
 - Yield monitor and lightbar guidance displays
 - GNSS data interpretation (EXCEL)
 - From basic data to prescription maps (Manifold GIS)
 - Profitability of precision agriculture (EXCEL)

Knowledge Assessment

- Assignments
 - Spreadsheet assignments (GNSS data, yield data, profitability)
 - Spatial data importing and display
 - Yield history analysis
 - Development of prescription maps
- Two term projects
 - Technology recommended line of equipment
 - Applications case studies
- Two written tests

