10th International Precision Agriculture Conference
Denver, Colorado
July 19, 2010

Precision Agriculture Education Program in Nebraska

Viacheslav I. Adamchuk Richard B. Ferguson
Biological Systems Engineering Agronomy and Horticulture
University of Nebraska - Lincoln
Bioresource Engineering McGill University

Course Description

- **Title:** Site-Specific Crop Management
- **Offering:** Fall semester – 3 credit hours (2 hrs lecture and 3 hrs lab) - elective
- **Prerequisites:** Senior standing with previous introduction to soils and/or general agriculture
- **Cross listing:** Agronomy, Mechanized Systems Management and Agricultural Engineering majors
- **Instruction:** Co-taught between Biological Systems Engineering and Agronomy and Horticulture Departments with several guest speakers
- **Description:** Principles and concepts of site-specific management. Evaluation of geographic information systems for crop production practices. Practical experience with hardware and software necessary for successful application of information affecting crop management.

Course Objectives

1. Use global navigation satellite systems (GNSS) receivers and understand the meaning of geo-referenced data.
2. Use geographic information systems (GIS) software to accomplish primary spatial data management tasks.
3. Work with yield monitoring and other relevant data acquisition equipment.
4. Identify major sources of errors and develop proper data-handling strategies.
5. Determine the potential usage of remote sensing and automated on-the-go mapping systems.
6. Understand the principles of variable rate application of seeds, water, fertilizers, lime, and other chemicals.
7. Integrate yield and soil fertility maps with other geo-referenced data to develop an effective site-specific crop management program.
8. Apply a systems approach and common sense to deduct causes of spatial variability and develop corresponding recommendations.
9. Identify potential advantages (both economic and environmental) and current limitations of precision agriculture.

Enrollment

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agronomy</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Diversified Agriculture</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mechanized Systems Management</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Agronomy</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
<td>12%</td>
</tr>
<tr>
<td>Senior</td>
<td>88%</td>
<td>88%</td>
<td>88%</td>
<td>88%</td>
<td>88%</td>
<td>88%</td>
<td>88%</td>
<td>88%</td>
<td>88%</td>
</tr>
</tbody>
</table>

Relevant Background

92% of Students with prior farming experience

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer literacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Word processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spreadsheets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm-level GIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced GIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geospatial data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield mapping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil sampling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote sensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer literacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Topics

- History and present level of Precision Agriculture
- Principles of yield mapping
- Principles of Global Positioning System (GPS)
- GPS vehicle guidance
- Principles of Geographic Information Systems (GIS)
- Web-based data layers
- Methods for soil sampling and analysis
- On-the-go soil & plant sensors
- Site-specific nutrients and water management
- Introduction to remote sensing
- Interpolation and processing of georeferenced data
- Statistical/geostatistical tools
- System approach to improved management strategies
- Variable rate technology
Textbooks

Hand-on Experience

• Field trips
 – GNSS field practice
 – Yield mapping practice
 – Soil pH/EC mapping and sampling practice
 – Husker Harvest Day visit

• Laboratory
 – Yield monitor and lightbar guidance displays
 – GNSS data interpretation (EXCEL)
 – From basic data to prescription maps (Manifold GIS)
 – Profitability of precision agriculture (EXCEL)

GPS Practice

Field Mapping Practice

Yield monitor installation, calibration, and operation
On-the-go mapping of soil pH and electrical conductivity
Soil sampling

GPS Practice

Tracking (boundary)
Measurements (distance)
Navigation (hide and find)

Functional Displays

Knowledge Assessment

• Assignments
 – Spreadsheet assignments (GNSS data, yield data, profitability)
 – Spatial data importing and display
 – Yield history analysis
 – Development of prescription maps

• Two term projects
 – Technology – recommended line of equipment
 – Applications – case studies

• Two written tests
Case Studies

- Three locations
 - Clay Center, NE (160 acres)
 - Cairo, NE (160 acres)
 - Bellwood, NE (200 acres)

- Principle data
 - Field boundary (.shp)
 - Six-seven years of crop yield (.txt)
 - Field topography (.txt)
 - DOQ image (.jpg)
 - Soil map (.shp)
 - Electrical conductivity measurements (.txt)
 - Soil laboratory analysis – 1 acre sampling (.txt)
 - Soil texture analysis – 3 acre sampling (.txt)

- Center pivot irrigation
- Ridge tillage
- Continuous corn (soybean enclosures)

Topic and Activity Ranking

Course Website

- University of Nebraska–Lincoln
 - Department of Agronomy and Horticulture

- Site-Specific Crop Management

- Course Info
 - SSM 3400A/B
 - Fall 2008 Semester
 - Instructor: Adam Chuk
 - Prerequisites: MATH 1010, ENGR 1020

- Fall 2008 Course Materials
 - Missouri Department of Agriculture
 - Missouri Extension Service

- Required Readings

- Software Tutorial
 - Lesson 1 - Downloading Publicly Available Data
 - Lesson 2 - 3D Display of Integrated Publicly Available Data
 - Lesson 3 - Processing a Multi-Year Yield History
 - Lesson 4 - Visualization and Analysis of Soil Data
 - Lesson 5 - Prescription Map Development

Software Tutorial

- bse.unl.edu/adamchuk/manifold
 - Username: paw
 - Password: soilmap

Course Website

- http://bse.unl.edu/adamchuk/class_ssm

Software Tutorial

- http://bse.unl.edu/adamchuk
 - E:mail: vadamchuk2@unl.edu